Chirality and anaesthetic drugs: A review and an update
Many molecules can exist as right-handed and left-handed forms that are non-superimposable mirror images of each other. They are known as enantiomers or substances of opposite shape. Such compounds are also said to be chiral (Greek chiros meaning ′hand′). Such chiral molecules are of great relevance...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2011-01-01
|
Series: | Indian Journal of Anaesthesia |
Subjects: | |
Online Access: | http://www.ijaweb.org/article.asp?issn=0019-5049;year=2011;volume=55;issue=6;spage=556;epage=562;aulast=Mitra |
id |
doaj-6b27c7366a0f4177b8622e079cc0f22f |
---|---|
record_format |
Article |
spelling |
doaj-6b27c7366a0f4177b8622e079cc0f22f2020-11-25T00:25:28ZengWolters Kluwer Medknow PublicationsIndian Journal of Anaesthesia0019-50492011-01-0155655656210.4103/0019-5049.90608Chirality and anaesthetic drugs: A review and an updateSukanya MitraPuneet ChopraMany molecules can exist as right-handed and left-handed forms that are non-superimposable mirror images of each other. They are known as enantiomers or substances of opposite shape. Such compounds are also said to be chiral (Greek chiros meaning ′hand′). Such chiral molecules are of great relevance to anaesthetic theory and practice. This review summarizes the basic concepts, pharmacokinetic and pharmacodynamic aspects of chirality, and some specific examples of their application in anaesthesia, along with recent advances to elucidate the anaesthetic mechanisms. Chirality is relevant to anaesthesia, simply because more than half of the synthetic agents used in anaesthesia practice are chiral drugs. Almost all these synthetic chiral drugs are administered as racemic mixture, rather than as single pure enantiomers. These mixtures are not drug formulations containing two or more therapeutic substances, but combination of isomeric substances, with the therapeutic activity residing mainly in one of the enantiomer. The other enantiomer can have undesirable properties, have different therapeutic activities or be pharmacologically inert. Specific examples of application of chirality in anaesthetic drugs include inhalational general anaesthetics (e.g. isoflurane), intravenous anaesthetics (e.g. etomidate, thiopentone), neuromuscular blocking agents (e.g. cisatracurium), local anaesthetics (e.g. ropivacaine and levobupivacaine) and other agents (e.g. levosimendan, dexmedetomidine, L-cysteine). In the recent advances, chirality study has not only helped new drug development as mentioned above, but has also contributed in a more profound way to the understanding of the mechanism of anaesthesia and anaesthetic drugs.http://www.ijaweb.org/article.asp?issn=0019-5049;year=2011;volume=55;issue=6;spage=556;epage=562;aulast=MitraAnaesthesiaanaesthetic drugschiralityenantiomers |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sukanya Mitra Puneet Chopra |
spellingShingle |
Sukanya Mitra Puneet Chopra Chirality and anaesthetic drugs: A review and an update Indian Journal of Anaesthesia Anaesthesia anaesthetic drugs chirality enantiomers |
author_facet |
Sukanya Mitra Puneet Chopra |
author_sort |
Sukanya Mitra |
title |
Chirality and anaesthetic drugs: A review and an update |
title_short |
Chirality and anaesthetic drugs: A review and an update |
title_full |
Chirality and anaesthetic drugs: A review and an update |
title_fullStr |
Chirality and anaesthetic drugs: A review and an update |
title_full_unstemmed |
Chirality and anaesthetic drugs: A review and an update |
title_sort |
chirality and anaesthetic drugs: a review and an update |
publisher |
Wolters Kluwer Medknow Publications |
series |
Indian Journal of Anaesthesia |
issn |
0019-5049 |
publishDate |
2011-01-01 |
description |
Many molecules can exist as right-handed and left-handed forms that are non-superimposable mirror images of each other. They are known as enantiomers or substances of opposite shape. Such compounds are also said to be chiral (Greek chiros meaning ′hand′). Such chiral molecules are of great relevance to anaesthetic theory and practice. This review summarizes the basic concepts, pharmacokinetic and pharmacodynamic aspects of chirality, and some specific examples of their application in anaesthesia, along with recent advances to elucidate the anaesthetic mechanisms. Chirality is relevant to anaesthesia, simply because more than half of the synthetic agents used in anaesthesia practice are chiral drugs. Almost all these synthetic chiral drugs are administered as racemic mixture, rather than as single pure enantiomers. These mixtures are not drug formulations containing two or more therapeutic substances, but combination of isomeric substances, with the therapeutic activity residing mainly in one of the enantiomer. The other enantiomer can have undesirable properties, have different therapeutic activities or be pharmacologically inert. Specific examples of application of chirality in anaesthetic drugs include inhalational general anaesthetics (e.g. isoflurane), intravenous anaesthetics (e.g. etomidate, thiopentone), neuromuscular blocking agents (e.g. cisatracurium), local anaesthetics (e.g. ropivacaine and levobupivacaine) and other agents (e.g. levosimendan, dexmedetomidine, L-cysteine). In the recent advances, chirality study has not only helped new drug development as mentioned above, but has also contributed in a more profound way to the understanding of the mechanism of anaesthesia and anaesthetic drugs. |
topic |
Anaesthesia anaesthetic drugs chirality enantiomers |
url |
http://www.ijaweb.org/article.asp?issn=0019-5049;year=2011;volume=55;issue=6;spage=556;epage=562;aulast=Mitra |
work_keys_str_mv |
AT sukanyamitra chiralityandanaestheticdrugsareviewandanupdate AT puneetchopra chiralityandanaestheticdrugsareviewandanupdate |
_version_ |
1725348817704845312 |