AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNING

Label placement is one of the most essential tasks in the fields of cartography and geographic information systems. Numerous studies have been conducted on the automatic label placement for the past few decades. In this study, we focus on automatic label placement of area-feature, which has been rel...

Full description

Bibliographic Details
Main Authors: Y. Li, M. Sakamoto, T. Shinohara, T. Satoh
Format: Article
Language:English
Published: Copernicus Publications 2020-08-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2020/117/2020/isprs-archives-XLIII-B4-2020-117-2020.pdf
id doaj-6b2266815c124d5f8b8735acba1ed174
record_format Article
spelling doaj-6b2266815c124d5f8b8735acba1ed1742020-11-25T03:48:13ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342020-08-01XLIII-B4-202011712210.5194/isprs-archives-XLIII-B4-2020-117-2020AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNINGY. Li0M. Sakamoto1T. Shinohara2T. Satoh3PASCO CORPORATION, 4-9-6 Aobadai, Meguro-ku, Tokyo 153-0042, JapanPASCO CORPORATION, 4-9-6 Aobadai, Meguro-ku, Tokyo 153-0042, JapanPASCO CORPORATION, 4-9-6 Aobadai, Meguro-ku, Tokyo 153-0042, JapanPASCO CORPORATION, 4-9-6 Aobadai, Meguro-ku, Tokyo 153-0042, JapanLabel placement is one of the most essential tasks in the fields of cartography and geographic information systems. Numerous studies have been conducted on the automatic label placement for the past few decades. In this study, we focus on automatic label placement of area-feature, which has been relatively less studied than that of point-feature and line-feature. Most of the existing approaches have adopted a rule-based algorithm, and there are limitations in expressing the characteristics of label placement for area-features of various shapes utilizing handcrafted rules, criteria, objective functions, etc. Hence, we propose a novel approach for automatic label placement of area-feature based on deep learning. The aim of the proposed approach is to obtain the complex and implicit characteristics of area-feature label placement by manual operation directly and automatically from training data. First, the area-features with vector format are converted into a binary image. Then a key-point detection model, which simultaneously detect and localize specific key-points from an image, is applied to the binary image to estimate the candidate positions of labels. Finally, the final label placement positions for each area-feature are determined via simple post-process. To evaluate the proposed approach, the experiments with cadastral data were conducted. The experimental results show that the ratios of the estimation errors within 1.2 m (corresponding to one pixel of the input image) were 92.6% and 94.5% in the center and upper-left placement style, respectively. It implies that the proposed approach could place the labels for area-features automatically and accurately.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2020/117/2020/isprs-archives-XLIII-B4-2020-117-2020.pdf
collection DOAJ
language English
format Article
sources DOAJ
author Y. Li
M. Sakamoto
T. Shinohara
T. Satoh
spellingShingle Y. Li
M. Sakamoto
T. Shinohara
T. Satoh
AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNING
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet Y. Li
M. Sakamoto
T. Shinohara
T. Satoh
author_sort Y. Li
title AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNING
title_short AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNING
title_full AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNING
title_fullStr AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNING
title_full_unstemmed AUTOMATIC LABEL PLACEMENT OF AREA-FEATURES USING DEEP LEARNING
title_sort automatic label placement of area-features using deep learning
publisher Copernicus Publications
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 1682-1750
2194-9034
publishDate 2020-08-01
description Label placement is one of the most essential tasks in the fields of cartography and geographic information systems. Numerous studies have been conducted on the automatic label placement for the past few decades. In this study, we focus on automatic label placement of area-feature, which has been relatively less studied than that of point-feature and line-feature. Most of the existing approaches have adopted a rule-based algorithm, and there are limitations in expressing the characteristics of label placement for area-features of various shapes utilizing handcrafted rules, criteria, objective functions, etc. Hence, we propose a novel approach for automatic label placement of area-feature based on deep learning. The aim of the proposed approach is to obtain the complex and implicit characteristics of area-feature label placement by manual operation directly and automatically from training data. First, the area-features with vector format are converted into a binary image. Then a key-point detection model, which simultaneously detect and localize specific key-points from an image, is applied to the binary image to estimate the candidate positions of labels. Finally, the final label placement positions for each area-feature are determined via simple post-process. To evaluate the proposed approach, the experiments with cadastral data were conducted. The experimental results show that the ratios of the estimation errors within 1.2 m (corresponding to one pixel of the input image) were 92.6% and 94.5% in the center and upper-left placement style, respectively. It implies that the proposed approach could place the labels for area-features automatically and accurately.
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2020/117/2020/isprs-archives-XLIII-B4-2020-117-2020.pdf
work_keys_str_mv AT yli automaticlabelplacementofareafeaturesusingdeeplearning
AT msakamoto automaticlabelplacementofareafeaturesusingdeeplearning
AT tshinohara automaticlabelplacementofareafeaturesusingdeeplearning
AT tsatoh automaticlabelplacementofareafeaturesusingdeeplearning
_version_ 1724499444437614592