A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
Abstract Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-03-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-00525-w |
id |
doaj-6b14817351fd4d07a2c01427dc0bd3b7 |
---|---|
record_format |
Article |
spelling |
doaj-6b14817351fd4d07a2c01427dc0bd3b72020-12-08T03:18:03ZengNature Publishing GroupScientific Reports2045-23222017-03-017111310.1038/s41598-017-00525-wA normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growthAli Gholipour0Caitlin K. Rollins1Clemente Velasco-Annis2Abdelhakim Ouaalam3Alireza Akhondi-Asl4Onur Afacan5Cynthia M. Ortinau6Sean Clancy7Catherine Limperopoulos8Edward Yang9Judy A. Estroff10Simon K. Warfield11Boston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of NeurologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of AnesthesiaBoston Children’s Hospital and Harvard Medical School, Department of RadiologyWashington University School of Medicine in St. Louis, Department of PediatricsBoston Children’s Hospital and Harvard Medical School, Department of RadiologyChildren’s National Medical Center, Department of Diagnostic Imaging RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyAbstract Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the key developmental periods. We have developed an algorithm for construction of an unbiased four-dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable registration in space with kernel regression in age. We applied this new algorithm to construct a spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation and labeled the structures of the developing brain. We evaluated the use of this atlas and additional individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in connectivity analysis, and for groupwise and longitudinal analysis of early brain growth.https://doi.org/10.1038/s41598-017-00525-w |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ali Gholipour Caitlin K. Rollins Clemente Velasco-Annis Abdelhakim Ouaalam Alireza Akhondi-Asl Onur Afacan Cynthia M. Ortinau Sean Clancy Catherine Limperopoulos Edward Yang Judy A. Estroff Simon K. Warfield |
spellingShingle |
Ali Gholipour Caitlin K. Rollins Clemente Velasco-Annis Abdelhakim Ouaalam Alireza Akhondi-Asl Onur Afacan Cynthia M. Ortinau Sean Clancy Catherine Limperopoulos Edward Yang Judy A. Estroff Simon K. Warfield A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth Scientific Reports |
author_facet |
Ali Gholipour Caitlin K. Rollins Clemente Velasco-Annis Abdelhakim Ouaalam Alireza Akhondi-Asl Onur Afacan Cynthia M. Ortinau Sean Clancy Catherine Limperopoulos Edward Yang Judy A. Estroff Simon K. Warfield |
author_sort |
Ali Gholipour |
title |
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth |
title_short |
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth |
title_full |
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth |
title_fullStr |
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth |
title_full_unstemmed |
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth |
title_sort |
normative spatiotemporal mri atlas of the fetal brain for automatic segmentation and analysis of early brain growth |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-03-01 |
description |
Abstract Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the key developmental periods. We have developed an algorithm for construction of an unbiased four-dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable registration in space with kernel regression in age. We applied this new algorithm to construct a spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation and labeled the structures of the developing brain. We evaluated the use of this atlas and additional individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in connectivity analysis, and for groupwise and longitudinal analysis of early brain growth. |
url |
https://doi.org/10.1038/s41598-017-00525-w |
work_keys_str_mv |
AT aligholipour anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT caitlinkrollins anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT clementevelascoannis anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT abdelhakimouaalam anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT alirezaakhondiasl anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT onurafacan anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT cynthiamortinau anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT seanclancy anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT catherinelimperopoulos anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT edwardyang anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT judyaestroff anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT simonkwarfield anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT aligholipour normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT caitlinkrollins normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT clementevelascoannis normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT abdelhakimouaalam normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT alirezaakhondiasl normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT onurafacan normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT cynthiamortinau normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT seanclancy normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT catherinelimperopoulos normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT edwardyang normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT judyaestroff normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth AT simonkwarfield normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth |
_version_ |
1724392648577384448 |