A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth

Abstract Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an...

Full description

Bibliographic Details
Main Authors: Ali Gholipour, Caitlin K. Rollins, Clemente Velasco-Annis, Abdelhakim Ouaalam, Alireza Akhondi-Asl, Onur Afacan, Cynthia M. Ortinau, Sean Clancy, Catherine Limperopoulos, Edward Yang, Judy A. Estroff, Simon K. Warfield
Format: Article
Language:English
Published: Nature Publishing Group 2017-03-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-017-00525-w
id doaj-6b14817351fd4d07a2c01427dc0bd3b7
record_format Article
spelling doaj-6b14817351fd4d07a2c01427dc0bd3b72020-12-08T03:18:03ZengNature Publishing GroupScientific Reports2045-23222017-03-017111310.1038/s41598-017-00525-wA normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growthAli Gholipour0Caitlin K. Rollins1Clemente Velasco-Annis2Abdelhakim Ouaalam3Alireza Akhondi-Asl4Onur Afacan5Cynthia M. Ortinau6Sean Clancy7Catherine Limperopoulos8Edward Yang9Judy A. Estroff10Simon K. Warfield11Boston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of NeurologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of AnesthesiaBoston Children’s Hospital and Harvard Medical School, Department of RadiologyWashington University School of Medicine in St. Louis, Department of PediatricsBoston Children’s Hospital and Harvard Medical School, Department of RadiologyChildren’s National Medical Center, Department of Diagnostic Imaging RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyBoston Children’s Hospital and Harvard Medical School, Department of RadiologyAbstract Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the key developmental periods. We have developed an algorithm for construction of an unbiased four-dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable registration in space with kernel regression in age. We applied this new algorithm to construct a spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation and labeled the structures of the developing brain. We evaluated the use of this atlas and additional individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in connectivity analysis, and for groupwise and longitudinal analysis of early brain growth.https://doi.org/10.1038/s41598-017-00525-w
collection DOAJ
language English
format Article
sources DOAJ
author Ali Gholipour
Caitlin K. Rollins
Clemente Velasco-Annis
Abdelhakim Ouaalam
Alireza Akhondi-Asl
Onur Afacan
Cynthia M. Ortinau
Sean Clancy
Catherine Limperopoulos
Edward Yang
Judy A. Estroff
Simon K. Warfield
spellingShingle Ali Gholipour
Caitlin K. Rollins
Clemente Velasco-Annis
Abdelhakim Ouaalam
Alireza Akhondi-Asl
Onur Afacan
Cynthia M. Ortinau
Sean Clancy
Catherine Limperopoulos
Edward Yang
Judy A. Estroff
Simon K. Warfield
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
Scientific Reports
author_facet Ali Gholipour
Caitlin K. Rollins
Clemente Velasco-Annis
Abdelhakim Ouaalam
Alireza Akhondi-Asl
Onur Afacan
Cynthia M. Ortinau
Sean Clancy
Catherine Limperopoulos
Edward Yang
Judy A. Estroff
Simon K. Warfield
author_sort Ali Gholipour
title A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
title_short A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
title_full A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
title_fullStr A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
title_full_unstemmed A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
title_sort normative spatiotemporal mri atlas of the fetal brain for automatic segmentation and analysis of early brain growth
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2017-03-01
description Abstract Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the key developmental periods. We have developed an algorithm for construction of an unbiased four-dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable registration in space with kernel regression in age. We applied this new algorithm to construct a spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation and labeled the structures of the developing brain. We evaluated the use of this atlas and additional individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in connectivity analysis, and for groupwise and longitudinal analysis of early brain growth.
url https://doi.org/10.1038/s41598-017-00525-w
work_keys_str_mv AT aligholipour anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT caitlinkrollins anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT clementevelascoannis anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT abdelhakimouaalam anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT alirezaakhondiasl anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT onurafacan anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT cynthiamortinau anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT seanclancy anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT catherinelimperopoulos anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT edwardyang anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT judyaestroff anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT simonkwarfield anormativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT aligholipour normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT caitlinkrollins normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT clementevelascoannis normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT abdelhakimouaalam normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT alirezaakhondiasl normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT onurafacan normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT cynthiamortinau normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT seanclancy normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT catherinelimperopoulos normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT edwardyang normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT judyaestroff normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
AT simonkwarfield normativespatiotemporalmriatlasofthefetalbrainforautomaticsegmentationandanalysisofearlybraingrowth
_version_ 1724392648577384448