Vinyl alcohol formation via catalytic β-dehydrogenation of ethanol on Ir(100)

Dehydrogenation of ethanol, CH3CH2OH, on Ir(100) was studied using Density Functional Theory (DFT) calculations. β-dehydrogenation of ethanol to CH2CH2OH has the lowest energy barrier, 0.30eV, among the three pathways. Vinyl alcohol (VA, CH2CHOH), can be formed from dehydrogenation of CH2CH2OH by ov...

Full description

Bibliographic Details
Main Authors: Ruitao Wu, Lichang Wang
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Chemical Physics Impact
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667022421000293
Description
Summary:Dehydrogenation of ethanol, CH3CH2OH, on Ir(100) was studied using Density Functional Theory (DFT) calculations. β-dehydrogenation of ethanol to CH2CH2OH has the lowest energy barrier, 0.30eV, among the three pathways. Vinyl alcohol (VA, CH2CHOH), can be formed from dehydrogenation of CH2CH2OH by overcoming an energy barrier of 0.59 eV. The DFT results indicate that ethanol dehydrogenation on Ir(100) to acetaldehyde in a fuel cell environment is most likely through β-dehydrogenation to VA followed by enol-keto tautomerization. Furthermore, the facile VA formation on Ir(100) reveals that polymerization of vinyl alcohol to synthesize polyvinyl alcohol is an intriguing pathway to be further explored.
ISSN:2667-0224