An inequality of W. L. Wang and P. F. Wang

In this note we present a proof of the inequality Hn/H′n≤Gn/G′n where Hn and Gn (resp. H′n and G′n) denote the weighted harmonic and geometric means of x1,…,xn (resp. 1−x1,…,1−xn) with xi∈(0,1/2], i=1,…,n.

Bibliographic Details
Main Author: Horst Alzer
Format: Article
Language:English
Published: Hindawi Limited 1990-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171290000436
id doaj-6af98ca6bef548f4a9f0c56cfaf25632
record_format Article
spelling doaj-6af98ca6bef548f4a9f0c56cfaf256322020-11-25T00:32:59ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113229529810.1155/S0161171290000436An inequality of W. L. Wang and P. F. WangHorst Alzer0Department of Mathematics, University of the Witwatersrand, Johannesburg, South AfricaIn this note we present a proof of the inequality Hn/H′n≤Gn/G′n where Hn and Gn (resp. H′n and G′n) denote the weighted harmonic and geometric means of x1,…,xn (resp. 1−x1,…,1−xn) with xi∈(0,1/2], i=1,…,n.http://dx.doi.org/10.1155/S0161171290000436geometric and harmonic meansinequalities.
collection DOAJ
language English
format Article
sources DOAJ
author Horst Alzer
spellingShingle Horst Alzer
An inequality of W. L. Wang and P. F. Wang
International Journal of Mathematics and Mathematical Sciences
geometric and harmonic means
inequalities.
author_facet Horst Alzer
author_sort Horst Alzer
title An inequality of W. L. Wang and P. F. Wang
title_short An inequality of W. L. Wang and P. F. Wang
title_full An inequality of W. L. Wang and P. F. Wang
title_fullStr An inequality of W. L. Wang and P. F. Wang
title_full_unstemmed An inequality of W. L. Wang and P. F. Wang
title_sort inequality of w. l. wang and p. f. wang
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 1990-01-01
description In this note we present a proof of the inequality Hn/H′n≤Gn/G′n where Hn and Gn (resp. H′n and G′n) denote the weighted harmonic and geometric means of x1,…,xn (resp. 1−x1,…,1−xn) with xi∈(0,1/2], i=1,…,n.
topic geometric and harmonic means
inequalities.
url http://dx.doi.org/10.1155/S0161171290000436
work_keys_str_mv AT horstalzer aninequalityofwlwangandpfwang
AT horstalzer inequalityofwlwangandpfwang
_version_ 1725317910359965696