Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine

Abstract Titanium dioxide (TiO2) nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications. TiO2 nanostructures promise to improve current theranostic strategies by leveraging the enhanced quantum confinement, thermal conversion, specific su...

Full description

Bibliographic Details
Main Authors: Morteza Hasanzadeh Kafshgari, Wolfgang H. Goldmann
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Nano-Micro Letters
Subjects:
Online Access:https://doi.org/10.1007/s40820-019-0362-1
Description
Summary:Abstract Titanium dioxide (TiO2) nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications. TiO2 nanostructures promise to improve current theranostic strategies by leveraging the enhanced quantum confinement, thermal conversion, specific surface area, and surface activity. This review highlights certain important aspects of fabrication strategies, which are employed to generate multifunctional TiO2 nanostructures, while outlining post-fabrication techniques with an emphasis on their suitability for nanomedicine. The biodistribution, toxicity, biocompatibility, cellular adhesion, and endocytosis of these nanostructures, when exposed to biological microenvironments, are examined in regard to their geometry, size, and surface chemistry. The final section focuses on recent biomedical applications of TiO2 nanostructures, specifically evaluating therapeutic delivery, photodynamic and sonodynamic therapy, bioimaging, biosensing, tissue regeneration, as well as chronic wound healing.
ISSN:2311-6706
2150-5551