Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis
<p>Abstract</p> <p>Background</p> <p>Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to nu...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-05-01
|
Series: | Algorithms for Molecular Biology |
Online Access: | http://www.almob.org/content/7/1/10 |
id |
doaj-6adf1dbab6514012be59c259a49ab068 |
---|---|
record_format |
Article |
spelling |
doaj-6adf1dbab6514012be59c259a49ab0682020-11-24T21:44:56ZengBMCAlgorithms for Molecular Biology1748-71882012-05-01711010.1186/1748-7188-7-10Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysisVinga SusanaCarvalho Alexandra MFrancisco Alexandre PRusso Luís MSAlmeida Jonas S<p>Abstract</p> <p>Background</p> <p>Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an <it>L</it>-long suffix will be located within 2<it><sup>-L </sup></it>distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations.</p> <p>Results</p> <p>The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm.</p> <p>Conclusions</p> <p>The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems.</p> http://www.almob.org/content/7/1/10 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vinga Susana Carvalho Alexandra M Francisco Alexandre P Russo Luís MS Almeida Jonas S |
spellingShingle |
Vinga Susana Carvalho Alexandra M Francisco Alexandre P Russo Luís MS Almeida Jonas S Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis Algorithms for Molecular Biology |
author_facet |
Vinga Susana Carvalho Alexandra M Francisco Alexandre P Russo Luís MS Almeida Jonas S |
author_sort |
Vinga Susana |
title |
Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis |
title_short |
Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis |
title_full |
Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis |
title_fullStr |
Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis |
title_full_unstemmed |
Pattern matching through Chaos Game Representation: bridging numerical and discrete data structures for biological sequence analysis |
title_sort |
pattern matching through chaos game representation: bridging numerical and discrete data structures for biological sequence analysis |
publisher |
BMC |
series |
Algorithms for Molecular Biology |
issn |
1748-7188 |
publishDate |
2012-05-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an <it>L</it>-long suffix will be located within 2<it><sup>-L </sup></it>distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations.</p> <p>Results</p> <p>The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm.</p> <p>Conclusions</p> <p>The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems.</p> |
url |
http://www.almob.org/content/7/1/10 |
work_keys_str_mv |
AT vingasusana patternmatchingthroughchaosgamerepresentationbridgingnumericalanddiscretedatastructuresforbiologicalsequenceanalysis AT carvalhoalexandram patternmatchingthroughchaosgamerepresentationbridgingnumericalanddiscretedatastructuresforbiologicalsequenceanalysis AT franciscoalexandrep patternmatchingthroughchaosgamerepresentationbridgingnumericalanddiscretedatastructuresforbiologicalsequenceanalysis AT russoluisms patternmatchingthroughchaosgamerepresentationbridgingnumericalanddiscretedatastructuresforbiologicalsequenceanalysis AT almeidajonass patternmatchingthroughchaosgamerepresentationbridgingnumericalanddiscretedatastructuresforbiologicalsequenceanalysis |
_version_ |
1725907731778371584 |