Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation

In this paper, we introduce a set of critical values for unit root tests that are robust in the presence of conditional heteroscedasticity errors using the normalizing and variance-stabilizing transformation (NoVaS) and examine their properties using Monte Carlo methods. In terms of the size of the...

Full description

Bibliographic Details
Main Author: Panagiotis Mantalos
Format: Article
Language:English
Published: Taylor & Francis Group 2017-01-01
Series:Cogent Economics & Finance
Subjects:
Online Access:http://dx.doi.org/10.1080/23322039.2016.1274282
id doaj-6ac88ffec4844af68fd0c301bf72cc31
record_format Article
spelling doaj-6ac88ffec4844af68fd0c301bf72cc312021-02-18T13:53:22ZengTaylor & Francis GroupCogent Economics & Finance2332-20392017-01-015110.1080/23322039.2016.12742821274282Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformationPanagiotis Mantalos0School of Business and Economics, Linnaeus University SwedenIn this paper, we introduce a set of critical values for unit root tests that are robust in the presence of conditional heteroscedasticity errors using the normalizing and variance-stabilizing transformation (NoVaS) and examine their properties using Monte Carlo methods. In terms of the size of the test, our analysis reveals that unit root tests with NoVaS-modified critical values have actual sizes close to the nominal size. For the power of the test, we find that unit root tests with NoVaS-modified critical values either have the same power as, or slightly better than, tests using conventional Dickey–Fuller critical values across the sample range considered.http://dx.doi.org/10.1080/23322039.2016.1274282critical valuesnormalizing and variance-stabilizing transformationunit root tests
collection DOAJ
language English
format Article
sources DOAJ
author Panagiotis Mantalos
spellingShingle Panagiotis Mantalos
Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation
Cogent Economics & Finance
critical values
normalizing and variance-stabilizing transformation
unit root tests
author_facet Panagiotis Mantalos
author_sort Panagiotis Mantalos
title Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation
title_short Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation
title_full Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation
title_fullStr Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation
title_full_unstemmed Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation
title_sort robust critical values for unit root tests for series with conditional heteroscedasticity errors: an application of the simple novas transformation
publisher Taylor & Francis Group
series Cogent Economics & Finance
issn 2332-2039
publishDate 2017-01-01
description In this paper, we introduce a set of critical values for unit root tests that are robust in the presence of conditional heteroscedasticity errors using the normalizing and variance-stabilizing transformation (NoVaS) and examine their properties using Monte Carlo methods. In terms of the size of the test, our analysis reveals that unit root tests with NoVaS-modified critical values have actual sizes close to the nominal size. For the power of the test, we find that unit root tests with NoVaS-modified critical values either have the same power as, or slightly better than, tests using conventional Dickey–Fuller critical values across the sample range considered.
topic critical values
normalizing and variance-stabilizing transformation
unit root tests
url http://dx.doi.org/10.1080/23322039.2016.1274282
work_keys_str_mv AT panagiotismantalos robustcriticalvaluesforunitroottestsforserieswithconditionalheteroscedasticityerrorsanapplicationofthesimplenovastransformation
_version_ 1724262868258390016