An Analytic Model for Estimating the Length of the Velocity Saturated Region in Double Gate Bilayer Graphene Transistors
An analytical model for surface potential of asymmetric double gate Bilayer Graphene (BLG) transistors is presented on the basis of two-dimensional Poisson’s equation. To verify the accuracy of potential model, the modelling data are compared with the simulation data of FlexPDE program and a good ag...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2013/560252 |
Summary: | An analytical model for surface potential of asymmetric double gate Bilayer Graphene (BLG) transistors is presented on the basis of two-dimensional Poisson’s equation. To verify the accuracy of potential model, the modelling data are compared with the simulation data of FlexPDE program and a good agreement is observed. From surface potential expression, the device behaviour in velocity saturation region is investigated. As a result, lateral electric field and length of velocity saturation region (Ld) are formulated and their dependence on several device parameters is carefully examined. |
---|---|
ISSN: | 1687-4110 1687-4129 |