A strategic interaction model of punishment favoring contagion of honest behavior.

The punishment effect on social behavior is analyzed within the strategic interaction framework of Cellular Automata and computational Evolutionary Game Theory. A new game, called Social Honesty (SH), is proposed. The SH game is analyzed in spatial configurations. Probabilistic punishment is used as...

Full description

Bibliographic Details
Main Authors: Marcel Cremene, D Dumitrescu, Ligia Cremene
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3904992?pdf=render
Description
Summary:The punishment effect on social behavior is analyzed within the strategic interaction framework of Cellular Automata and computational Evolutionary Game Theory. A new game, called Social Honesty (SH), is proposed. The SH game is analyzed in spatial configurations. Probabilistic punishment is used as a dishonesty deterrence mechanism. In order to capture the intrinsic uncertainty of social environments, payoffs are described as random variables. New dynamics, with a new relation between punishment probability and punishment severity, are revealed. Punishment probability proves to be more important than punishment severity in guiding convergence towards honesty as predominant behavior. This result is confirmed by empirical evidence and reported experiments. Critical values and transition intervals for punishment probability and severity are identified and analyzed. Clusters of honest or dishonest players emerge spontaneously from the very first rounds of interaction and are determinant for the future dynamics and outcomes.
ISSN:1932-6203