Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield

Abstract Background As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. Results An ultrahigh-density...

Full description

Bibliographic Details
Main Authors: Zhiqiang Xia, Shengkui Zhang, Mingfu Wen, Cheng Lu, Yufang Sun, Meiling Zou, Wenquan Wang
Format: Article
Language:English
Published: BMC 2018-01-01
Series:Biotechnology for Biofuels
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13068-017-1004-9
Description
Summary:Abstract Background As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. Results An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs (reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF-1, qNF-2a, qNF-2b, qNF-2c, qNF-3, qNF-4, qNF-6, qNF-7a, qNF-7b and qNF-8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, qTWF-1, qTWF-2 and qTWF-3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified three pleiotropic reQTL pairs associated with both the NF and TWF traits. Conclusion This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the localization of other economically important QTLs and candidate genes for Jatropha.
ISSN:1754-6834