Iterative Approximation of Basic Belief Assignment Based on Distance of Evidence.

In the theory of belief functions, the approximation of a basic belief assignment (BBA) is for reducing the high computational cost especially when large number of focal elements are available. In traditional BBA approximation approaches, a focal element's own characteristics such as the mass a...

Full description

Bibliographic Details
Main Authors: Yi Yang, Yuanli Liu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4735487?pdf=render
Description
Summary:In the theory of belief functions, the approximation of a basic belief assignment (BBA) is for reducing the high computational cost especially when large number of focal elements are available. In traditional BBA approximation approaches, a focal element's own characteristics such as the mass assignment and the cardinality, are usually used separately or jointly as criteria for the removal of focal elements. Besides the computational cost, the distance between the original BBA and the approximated one is also concerned, which represents the loss of information in BBA approximation. In this paper, an iterative approximation approach is proposed based on maximizing the closeness, i.e., minimizing the distance between the approximated BBA in current iteration and the BBA obtained in the previous iteration, where one focal element is removed in each iteration. The iteration stops when the desired number of focal elements is reached. The performance evaluation approaches for BBA approximations are also discussed and used to compare and evaluate traditional BBA approximations and the newly proposed one in this paper, which include traditional time-based way, closeness-based way and new proposed ones. Experimental results and related analyses are provided to show the rationality and efficiency of our proposed new BBA approximation.
ISSN:1932-6203