Features of distribution of temperature along the length of oil pipeline
One of the actual challenges in fluid (oil, water and gas) transportation from wells to oil treatment installation is determination of a law of temperature distribution along the length of a pipeline at low ambient temperature. That temperature leads to increase in viscosity and deposition of wax...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Perm National Research Polytechnic University
2017-06-01
|
Series: | Perm Journal of Petroleum and Mining Engineering |
Subjects: | |
Online Access: | http://vestnik.pstu.ru/get/_res/fs/file2.pdf/6595/Features+of+distribution+of+temperature+along+the+length+of+oil+pipelinefile2.pdf |
Summary: | One of the actual challenges in fluid (oil, water and gas) transportation from wells to oil treatment installation is determination of a law of temperature distribution along the length of a pipeline at low ambient temperature. That temperature leads to increase in viscosity and deposition of wax on inner surface of a pipe. To overcome that challenge it is needed to consider several defining characteristics of formation fluid (FF) flow. Complexity of a solution is caused by two factors. From the one hand, in most cases (especially on a late stage of field development) FF is an oil emulsion (OE) that contains gas bubbles. From the other hand, temperature gradient between fluid flow and the environment has significant value (especially in the winter period of the year). At the same time, the higher content of emulsified water droplets (EWD) in OE and lower flow temperature, the higher FF viscosity, and consequently productivity (efficiency) of oil pumping system is reduced. Performed research and analysis of field experimental data showed that a function of oil viscosity versus temperature has a hyperbolic law; a function of OE viscosity versus concentration of EWD has a parabolic one. A heat balance for a certain section of a pipeline in steady state of fluid motion using a method of separation of variables was established taking into account above mentioned factors, Fourier's empirical laws on heat conductivity and Newton's law on heat transfer. As a result, unlike existing works, an exponential law of distribution of temperature along the length of a pipeline is obtained. A law takes into account nonlinear nature of change in viscosity of OE from change in temperature of flow and concentration of water in an emulsion. |
---|---|
ISSN: | 2224-9923 2305-1140 |