Designing a kinematic module with rounding to model the processes of combined radial-longitudinal extrusion involving a tool whose configuration is complex

It is advisable that parts whose shape is complex and which are made from solid or hollow blanks should be made by means of transverse and combined radial-longitudinal extrusion. The variation of manufacturing modes, tool configurations (in the form of chambers and rounding of the transitional secti...

Full description

Bibliographic Details
Main Authors: Natalia Hrudkina, Igramotdin Aliiev, Oleg Markov, Iurii Savchenko, Liudmyla Sukhovirska, Liubov Tahan
Format: Article
Language:English
Published: PC Technology Center 2021-04-01
Series:Eastern-European Journal of Enterprise Technologies
Subjects:
Online Access:http://journals.uran.ua/eejet/article/view/227120
Description
Summary:It is advisable that parts whose shape is complex and which are made from solid or hollow blanks should be made by means of transverse and combined radial-longitudinal extrusion. The variation of manufacturing modes, tool configurations (in the form of chambers and rounding of the transitional sections of matrices) requires an adequate preliminary assessment of the force regime and the features of part shape formation. This paper has proposed a curvilinear kinematic module of the trapezoidal form for modeling radial-longitudinal extrusion processes in the presence of matrix rounding. Given the impossibility of using a quarter-circle boundary for the kinematically assigned possible velocity field, it has been proposed to use approximate curves in the form of z1(r) and z2(r). Taking into account the slightest deviation in the length of the arc of the approximate curve z1(r) and the area of the curvilinear trapezoid bounded by it relative to a quarter of the circle (not exceeding 0.8 % for any ratio), it has been recommended using this particular replacement. We have performed calculations of the value of the reduced deformation pressure inside the kinematic module with rounding taking into consideration the power of cutting forces at the border with adjacent kinematic modules. As an example, the devised module with rounding embedded in the estimation scheme of radial extrusion was analyzed. A significant impact of friction conditions on the force mode and the corresponding optimal value of the rounding radius have been identified. The resulting kinematic module makes it possible to expand the capabilities of the energy method for modeling cold extrusion processes involving the tools of complex form according to new deformation schemes. That could contribute to preparing recommendations on the optimal tool configuration and more active industrial implementation of these processes
ISSN:1729-3774
1729-4061