A variant of sparse partial least squares for variable selection and data exploration
When data are sparse and/or predictors multicollinear, current implementation of sparse partial least squares (SPLS) does not give estimates for non-selected predictors nor provide a measure of inference. In response, an approach termed all-possible SPLS is proposed, which fits a SPLS model for all...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2014-03-01
|
Series: | Frontiers in Neuroinformatics |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fninf.2014.00018/full |