Comparison of the Level and Mechanisms of Toxicity of Carbon Nanotubes, Carbon Nanofibers, and Silicon Nanotubes in Bioassay with Four Marine Microalgae

Nanoparticles (NPs) have various applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With an increasing annual production of NPs, the risks of their harmful influence to the environment and human health is rising. Currently, our knowledge abo...

Full description

Bibliographic Details
Main Authors: Konstantin Pikula, Vladimir Chaika, Alexander Zakharenko, Zhanna Markina, Aleksey Vedyagin, Vladimir Kuznetsov, Alexander Gusev, Soojin Park, Kirill Golokhvast
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/3/485
Description
Summary:Nanoparticles (NPs) have various applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With an increasing annual production of NPs, the risks of their harmful influence to the environment and human health is rising. Currently, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Additionally, poor understanding of how physical and chemical characteristic and different conditions influence the toxicity of NPs restrict our attempts to develop the standards and regulations which might allow us to maintain safe living conditions. The marine species and their habitat environment are under continuous stress due to anthropogenic activities which result in the appearance of NPs in the aquatic environment. Our study aimed to evaluate and compare biochemical effects caused by the influence of different types of carbon nanotubes, carbon nanofibers, and silica nanotubes on four marine microalgae species. We evaluated the changes in growth-rate, esterase activity, membrane polarization, and size changes of microalgae cells using flow cytometry method. Our results demonstrated that toxic effects caused by the carbon nanotubes strongly correlated with the content of heavy metal impurities in the NPs. More hydrophobic carbon NPs with less ordered structure had a higher impact on the red microalgae <i>P. purpureum</i> because of higher adherence between the particles and mucous covering of the algae. Silica NPs caused significant inhibition of microalgae growth-rate predominantly produced by mechanical influence.
ISSN:2079-4991