All-optical phase control in nanophotonic silicon waveguides with epsilon-near-zero nanoheaters

Abstract A wide variety of nanophotonic applications require controlling the optical phase without changing optical absorption, which in silicon (Si) photonics has been mostly pursued electrically. Here, we investigate the unique light–matter interaction exhibited by epsilon-near-zero (ENZ) material...

Full description

Bibliographic Details
Main Authors: Jorge Parra, Wolfram H. P. Pernice, Pablo Sanchis
Format: Article
Language:English
Published: Nature Publishing Group 2021-05-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-88865-6
Description
Summary:Abstract A wide variety of nanophotonic applications require controlling the optical phase without changing optical absorption, which in silicon (Si) photonics has been mostly pursued electrically. Here, we investigate the unique light–matter interaction exhibited by epsilon-near-zero (ENZ) materials for all-optical phase control in nanophotonic silicon waveguides. Thermo-optic all-optical phase tuning is achieved using an ENZ material as a compact, low-loss, and efficient optical heat source. For a 10- $$\upmu $$ μ m-long ENZ/Si waveguide, insertion loss below 0.5 dB for the transverse electric (TE) polarization is predicted together with a high control efficiency of $$\sim 0.107\uppi $$ ∼ 0.107 π $$\hbox {mW}^{-1}$$ mW - 1 . Our proposal provides a new approach to achieve all-optical, on-chip, and low-loss phase tuning in silicon photonic circuits.
ISSN:2045-2322