Identification of Functionally Interconnected Neurons Using Factor Analysis

The advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal intercon...

Full description

Bibliographic Details
Main Authors: Jorge H. Soletta, Fernando D. Farfán, Ana L. Albarracín, Alvaro G. Pizá, Facundo A. Lucianna, Carmelo J. Felice
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2017/8056141
id doaj-6a4a57a4fdc946e4a61afb5780594e16
record_format Article
spelling doaj-6a4a57a4fdc946e4a61afb5780594e162020-11-24T22:39:48ZengHindawi LimitedComputational Intelligence and Neuroscience1687-52651687-52732017-01-01201710.1155/2017/80561418056141Identification of Functionally Interconnected Neurons Using Factor AnalysisJorge H. Soletta0Fernando D. Farfán1Ana L. Albarracín2Alvaro G. Pizá3Facundo A. Lucianna4Carmelo J. Felice5Laboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaThe advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal interconnections are in increasing demand in the area of neurosciences. Here, we proposed a factor analysis to identify functional interconnections among neurons via spike trains. This method was evaluated using simulations of neural discharges from different interconnections schemes. The results have revealed that the proposed method not only allows detecting neural interconnections but will also allow detecting the presence of presynaptic neurons without the need of the recording of them.http://dx.doi.org/10.1155/2017/8056141
collection DOAJ
language English
format Article
sources DOAJ
author Jorge H. Soletta
Fernando D. Farfán
Ana L. Albarracín
Alvaro G. Pizá
Facundo A. Lucianna
Carmelo J. Felice
spellingShingle Jorge H. Soletta
Fernando D. Farfán
Ana L. Albarracín
Alvaro G. Pizá
Facundo A. Lucianna
Carmelo J. Felice
Identification of Functionally Interconnected Neurons Using Factor Analysis
Computational Intelligence and Neuroscience
author_facet Jorge H. Soletta
Fernando D. Farfán
Ana L. Albarracín
Alvaro G. Pizá
Facundo A. Lucianna
Carmelo J. Felice
author_sort Jorge H. Soletta
title Identification of Functionally Interconnected Neurons Using Factor Analysis
title_short Identification of Functionally Interconnected Neurons Using Factor Analysis
title_full Identification of Functionally Interconnected Neurons Using Factor Analysis
title_fullStr Identification of Functionally Interconnected Neurons Using Factor Analysis
title_full_unstemmed Identification of Functionally Interconnected Neurons Using Factor Analysis
title_sort identification of functionally interconnected neurons using factor analysis
publisher Hindawi Limited
series Computational Intelligence and Neuroscience
issn 1687-5265
1687-5273
publishDate 2017-01-01
description The advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal interconnections are in increasing demand in the area of neurosciences. Here, we proposed a factor analysis to identify functional interconnections among neurons via spike trains. This method was evaluated using simulations of neural discharges from different interconnections schemes. The results have revealed that the proposed method not only allows detecting neural interconnections but will also allow detecting the presence of presynaptic neurons without the need of the recording of them.
url http://dx.doi.org/10.1155/2017/8056141
work_keys_str_mv AT jorgehsoletta identificationoffunctionallyinterconnectedneuronsusingfactoranalysis
AT fernandodfarfan identificationoffunctionallyinterconnectedneuronsusingfactoranalysis
AT analalbarracin identificationoffunctionallyinterconnectedneuronsusingfactoranalysis
AT alvarogpiza identificationoffunctionallyinterconnectedneuronsusingfactoranalysis
AT facundoalucianna identificationoffunctionallyinterconnectedneuronsusingfactoranalysis
AT carmelojfelice identificationoffunctionallyinterconnectedneuronsusingfactoranalysis
_version_ 1725707553551155200