Identification of Functionally Interconnected Neurons Using Factor Analysis
The advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal intercon...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Computational Intelligence and Neuroscience |
Online Access: | http://dx.doi.org/10.1155/2017/8056141 |
id |
doaj-6a4a57a4fdc946e4a61afb5780594e16 |
---|---|
record_format |
Article |
spelling |
doaj-6a4a57a4fdc946e4a61afb5780594e162020-11-24T22:39:48ZengHindawi LimitedComputational Intelligence and Neuroscience1687-52651687-52732017-01-01201710.1155/2017/80561418056141Identification of Functionally Interconnected Neurons Using Factor AnalysisJorge H. Soletta0Fernando D. Farfán1Ana L. Albarracín2Alvaro G. Pizá3Facundo A. Lucianna4Carmelo J. Felice5Laboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaLaboratorio de Medios e Interfases, Departamento de Bioingeniería (DBI), Facultad de Ciencias Exactas y Tecnología (FACET), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, ArgentinaThe advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal interconnections are in increasing demand in the area of neurosciences. Here, we proposed a factor analysis to identify functional interconnections among neurons via spike trains. This method was evaluated using simulations of neural discharges from different interconnections schemes. The results have revealed that the proposed method not only allows detecting neural interconnections but will also allow detecting the presence of presynaptic neurons without the need of the recording of them.http://dx.doi.org/10.1155/2017/8056141 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jorge H. Soletta Fernando D. Farfán Ana L. Albarracín Alvaro G. Pizá Facundo A. Lucianna Carmelo J. Felice |
spellingShingle |
Jorge H. Soletta Fernando D. Farfán Ana L. Albarracín Alvaro G. Pizá Facundo A. Lucianna Carmelo J. Felice Identification of Functionally Interconnected Neurons Using Factor Analysis Computational Intelligence and Neuroscience |
author_facet |
Jorge H. Soletta Fernando D. Farfán Ana L. Albarracín Alvaro G. Pizá Facundo A. Lucianna Carmelo J. Felice |
author_sort |
Jorge H. Soletta |
title |
Identification of Functionally Interconnected Neurons Using Factor Analysis |
title_short |
Identification of Functionally Interconnected Neurons Using Factor Analysis |
title_full |
Identification of Functionally Interconnected Neurons Using Factor Analysis |
title_fullStr |
Identification of Functionally Interconnected Neurons Using Factor Analysis |
title_full_unstemmed |
Identification of Functionally Interconnected Neurons Using Factor Analysis |
title_sort |
identification of functionally interconnected neurons using factor analysis |
publisher |
Hindawi Limited |
series |
Computational Intelligence and Neuroscience |
issn |
1687-5265 1687-5273 |
publishDate |
2017-01-01 |
description |
The advances in electrophysiological methods have allowed registering the joint activity of single neurons. Thus, studies on functional dynamics of complex-valued neural networks and its information processing mechanism have been conducted. Particularly, the methods for identifying neuronal interconnections are in increasing demand in the area of neurosciences. Here, we proposed a factor analysis to identify functional interconnections among neurons via spike trains. This method was evaluated using simulations of neural discharges from different interconnections schemes. The results have revealed that the proposed method not only allows detecting neural interconnections but will also allow detecting the presence of presynaptic neurons without the need of the recording of them. |
url |
http://dx.doi.org/10.1155/2017/8056141 |
work_keys_str_mv |
AT jorgehsoletta identificationoffunctionallyinterconnectedneuronsusingfactoranalysis AT fernandodfarfan identificationoffunctionallyinterconnectedneuronsusingfactoranalysis AT analalbarracin identificationoffunctionallyinterconnectedneuronsusingfactoranalysis AT alvarogpiza identificationoffunctionallyinterconnectedneuronsusingfactoranalysis AT facundoalucianna identificationoffunctionallyinterconnectedneuronsusingfactoranalysis AT carmelojfelice identificationoffunctionallyinterconnectedneuronsusingfactoranalysis |
_version_ |
1725707553551155200 |