A note on degenerate generalized Laguerre polynomials and Lah numbers
Abstract The aim of this paper is to introduce the degenerate generalized Laguerre polynomials as the degenerate version of the generalized Laguerre polynomials and to derive some properties related to those polynomials and Lah numbers, including an explicit expression, a Rodrigues type formula, and...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-09-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13662-021-03574-8 |
id |
doaj-6a476d09349f409c8131eb599652c914 |
---|---|
record_format |
Article |
spelling |
doaj-6a476d09349f409c8131eb599652c9142021-09-19T11:12:11ZengSpringerOpenAdvances in Difference Equations1687-18472021-09-012021111210.1186/s13662-021-03574-8A note on degenerate generalized Laguerre polynomials and Lah numbersTaekyun Kim0Dmitry V. Dolgy1Dae San Kim2Hye Kyung Kim3Seong Ho Park4Department of Mathematics, Kwangwoon UniversityDepartment of Mathematical Methods in Economy, Far Eastern Federal UniversityDepartment of Mathematics, Sogang UniversityDepartment of Mathematics Education, Daegu Catholic UniversityDepartment of Mathematics, Kwangwoon UniversityAbstract The aim of this paper is to introduce the degenerate generalized Laguerre polynomials as the degenerate version of the generalized Laguerre polynomials and to derive some properties related to those polynomials and Lah numbers, including an explicit expression, a Rodrigues type formula, and expressions for the derivatives. The novelty of the present paper is that it is the first paper on degenerate versions of orthogonal polynomials.https://doi.org/10.1186/s13662-021-03574-8Degenerate generalized Laguerre polynomialsLah numbersDegenerate exponential function |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Taekyun Kim Dmitry V. Dolgy Dae San Kim Hye Kyung Kim Seong Ho Park |
spellingShingle |
Taekyun Kim Dmitry V. Dolgy Dae San Kim Hye Kyung Kim Seong Ho Park A note on degenerate generalized Laguerre polynomials and Lah numbers Advances in Difference Equations Degenerate generalized Laguerre polynomials Lah numbers Degenerate exponential function |
author_facet |
Taekyun Kim Dmitry V. Dolgy Dae San Kim Hye Kyung Kim Seong Ho Park |
author_sort |
Taekyun Kim |
title |
A note on degenerate generalized Laguerre polynomials and Lah numbers |
title_short |
A note on degenerate generalized Laguerre polynomials and Lah numbers |
title_full |
A note on degenerate generalized Laguerre polynomials and Lah numbers |
title_fullStr |
A note on degenerate generalized Laguerre polynomials and Lah numbers |
title_full_unstemmed |
A note on degenerate generalized Laguerre polynomials and Lah numbers |
title_sort |
note on degenerate generalized laguerre polynomials and lah numbers |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2021-09-01 |
description |
Abstract The aim of this paper is to introduce the degenerate generalized Laguerre polynomials as the degenerate version of the generalized Laguerre polynomials and to derive some properties related to those polynomials and Lah numbers, including an explicit expression, a Rodrigues type formula, and expressions for the derivatives. The novelty of the present paper is that it is the first paper on degenerate versions of orthogonal polynomials. |
topic |
Degenerate generalized Laguerre polynomials Lah numbers Degenerate exponential function |
url |
https://doi.org/10.1186/s13662-021-03574-8 |
work_keys_str_mv |
AT taekyunkim anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT dmitryvdolgy anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT daesankim anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT hyekyungkim anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT seonghopark anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT taekyunkim noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT dmitryvdolgy noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT daesankim noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT hyekyungkim noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers AT seonghopark noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers |
_version_ |
1717375866580762624 |