A note on degenerate generalized Laguerre polynomials and Lah numbers

Abstract The aim of this paper is to introduce the degenerate generalized Laguerre polynomials as the degenerate version of the generalized Laguerre polynomials and to derive some properties related to those polynomials and Lah numbers, including an explicit expression, a Rodrigues type formula, and...

Full description

Bibliographic Details
Main Authors: Taekyun Kim, Dmitry V. Dolgy, Dae San Kim, Hye Kyung Kim, Seong Ho Park
Format: Article
Language:English
Published: SpringerOpen 2021-09-01
Series:Advances in Difference Equations
Subjects:
Online Access:https://doi.org/10.1186/s13662-021-03574-8
id doaj-6a476d09349f409c8131eb599652c914
record_format Article
spelling doaj-6a476d09349f409c8131eb599652c9142021-09-19T11:12:11ZengSpringerOpenAdvances in Difference Equations1687-18472021-09-012021111210.1186/s13662-021-03574-8A note on degenerate generalized Laguerre polynomials and Lah numbersTaekyun Kim0Dmitry V. Dolgy1Dae San Kim2Hye Kyung Kim3Seong Ho Park4Department of Mathematics, Kwangwoon UniversityDepartment of Mathematical Methods in Economy, Far Eastern Federal UniversityDepartment of Mathematics, Sogang UniversityDepartment of Mathematics Education, Daegu Catholic UniversityDepartment of Mathematics, Kwangwoon UniversityAbstract The aim of this paper is to introduce the degenerate generalized Laguerre polynomials as the degenerate version of the generalized Laguerre polynomials and to derive some properties related to those polynomials and Lah numbers, including an explicit expression, a Rodrigues type formula, and expressions for the derivatives. The novelty of the present paper is that it is the first paper on degenerate versions of orthogonal polynomials.https://doi.org/10.1186/s13662-021-03574-8Degenerate generalized Laguerre polynomialsLah numbersDegenerate exponential function
collection DOAJ
language English
format Article
sources DOAJ
author Taekyun Kim
Dmitry V. Dolgy
Dae San Kim
Hye Kyung Kim
Seong Ho Park
spellingShingle Taekyun Kim
Dmitry V. Dolgy
Dae San Kim
Hye Kyung Kim
Seong Ho Park
A note on degenerate generalized Laguerre polynomials and Lah numbers
Advances in Difference Equations
Degenerate generalized Laguerre polynomials
Lah numbers
Degenerate exponential function
author_facet Taekyun Kim
Dmitry V. Dolgy
Dae San Kim
Hye Kyung Kim
Seong Ho Park
author_sort Taekyun Kim
title A note on degenerate generalized Laguerre polynomials and Lah numbers
title_short A note on degenerate generalized Laguerre polynomials and Lah numbers
title_full A note on degenerate generalized Laguerre polynomials and Lah numbers
title_fullStr A note on degenerate generalized Laguerre polynomials and Lah numbers
title_full_unstemmed A note on degenerate generalized Laguerre polynomials and Lah numbers
title_sort note on degenerate generalized laguerre polynomials and lah numbers
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2021-09-01
description Abstract The aim of this paper is to introduce the degenerate generalized Laguerre polynomials as the degenerate version of the generalized Laguerre polynomials and to derive some properties related to those polynomials and Lah numbers, including an explicit expression, a Rodrigues type formula, and expressions for the derivatives. The novelty of the present paper is that it is the first paper on degenerate versions of orthogonal polynomials.
topic Degenerate generalized Laguerre polynomials
Lah numbers
Degenerate exponential function
url https://doi.org/10.1186/s13662-021-03574-8
work_keys_str_mv AT taekyunkim anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT dmitryvdolgy anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT daesankim anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT hyekyungkim anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT seonghopark anoteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT taekyunkim noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT dmitryvdolgy noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT daesankim noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT hyekyungkim noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
AT seonghopark noteondegenerategeneralizedlaguerrepolynomialsandlahnumbers
_version_ 1717375866580762624