Summary: | Mobile robots are faced with problems (for ex. path planning) with many alternative solutions (ex. paths) based on several factors, and they must make a selection by quantifying the factors and mathematically evaluating the alternative solutions. Robot path planning is an integral process of mobile robots. A shortest path is generally chosen, however, it is not necessarily the optimal path. Apart from the distance between the start and goal locations, a robot must consider several other factors like the bumpiness, steepness, and crowd on the path. Robots are equipped with sensors like cameras, inertial sensors, and distance sensors to measure these factors. Different paths could be generated between the same start and goal locations considering these factors. The robot must select the optimal path from many paths. The factors which influence the generation of such paths can be dynamic. In this paper we propose to use Fuzzy Analytical Hierarchical Process (Fuzzy-AHP) to analytically select the optimal path from different paths. Fuzzy-AHP provides two navigational approaches, namely, defensive and offensive approaches which can be taken by mobile robots for navigation. In this paper, we present a case study of robot path selection with Fuzzy-AHP.
|