Summary: | A theoretical bifurcation control strategy is presented for a single Fitzhugh-Nagumo (FN) type neuron. The bifurcation conditions are tracked for varying parameters of the individual FN neurons. A MATLAB package called as MATCONT is utilized for this purpose and all parameters of the neuron is analyzed one-by-one. Analysis by MATCONT revealed five Hopf (H) and one Limit-Point/Saddle Point (LP) bifurcation. The Hopf type of bifurcations are controlled by a washout filter supported by projective control theory. Washout filters are designed as first and second order. First order washout filter which is also physically applicable appeared to be more advantageous than the second order version. It appeared that, the LP case could not be stabilized by the aid of a washout filter. To solve this issue, a nonlinear controller is proposed. The only drawback associated with that is its inability to keep the original equilibrium point. Simulations are also provided to validate the research done.
|