Development of tracheobronchial fluid for in vitro bioaccessibility assessment of particulates-bound trace elements

This study was piloted to evaluate bioaccessibility of particulate-bound trace elements using synthetic epithelia lung fluid; in which dipalmitoylphophatidylcholine was substituted with locus bean gum (LBSFL). The resulting data reveal that no significant change in physicochemical characteristics of...

Full description

Bibliographic Details
Main Authors: Emmanuel Gbenga Olumayede, Ilemobayo Oguntimehin, Bolanle Babalola, Chukuwebe C. Ojiodu, Richard O. Akinyeye, Grace Olubunmi Sodipe, Joseph Uche, Ayomipo Ojo
Format: Article
Language:English
Published: Elsevier 2019-01-01
Series:MethodsX
Online Access:http://www.sciencedirect.com/science/article/pii/S2215016119302043
Description
Summary:This study was piloted to evaluate bioaccessibility of particulate-bound trace elements using synthetic epithelia lung fluid; in which dipalmitoylphophatidylcholine was substituted with locus bean gum (LBSFL). The resulting data reveal that no significant change in physicochemical characteristics of the stimulated lung fluid compare with similar synthetic fluids; pH value of 7.3, density (0.998gcm−3), conductivity (13.9 mS m-1), surface viscosity (1.136 × 10-12 pas) and surface tension (50.6 mN m-1). To prove the potential applicability of the fluid in in vitro bioaccessibility test, we compared bioaccessibility of particulates-bound trace elements using this fluid with those of stimulated epithelial lung fluid. Bioaccessibility were relatively low values (<30%) in locus bean substituted lung fluid and stimulated epithelial lung fluid. Specifically, As and Cd had significantly higher bioaccessibility values in locus bean substituted lung fluid than stimulated epithelial lung fluid. The data demonstrate that fluid formulated and used in this study can provide a suitable means of evaluate bioaccessibility of trace elements-bound to airborne particulates. • The fluid was used for assessing bioaccessibility of particulate matters-bound trace elements • The formulated fluid can be applied to study in toxicity assessment • The data can be used for inter-laboratory comparison of bioaccessibility of particulate -bound trace element and could stimulate environmental concerns on the impacts of airborne particulates. Method name: In vitro bioaccessibility extraction of particulate matters-bound trace elements, Keywords: Bioaccessibility, Tracheobronchial fluid, Particulate matters-bound trace elements
ISSN:2215-0161