Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice

Summary: Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem ce...

Full description

Bibliographic Details
Main Authors: Jack C. Reidling, Aroa Relaño-Ginés, Sandra M. Holley, Joseph Ochaba, Cindy Moore, Brian Fury, Alice Lau, Andrew H. Tran, Sylvia Yeung, Delaram Salamati, Chunni Zhu, Asa Hatami, Carlos Cepeda, Joshua A. Barry, Talia Kamdjou, Alvin King, Dane Coleal-Bergum, Nicholas R. Franich, Frank M. LaFerla, Joan S. Steffan, Mathew Blurton-Jones, Charles K. Meshul, Gerhard Bauer, Michael S. Levine, Marie-Francoise Chesselet, Leslie M. Thompson
Format: Article
Language:English
Published: Elsevier 2018-01-01
Series:Stem Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213671117304915
id doaj-6a20e0b98a194e96bbd0862727f88f6d
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Jack C. Reidling
Aroa Relaño-Ginés
Sandra M. Holley
Joseph Ochaba
Cindy Moore
Brian Fury
Alice Lau
Andrew H. Tran
Sylvia Yeung
Delaram Salamati
Chunni Zhu
Asa Hatami
Carlos Cepeda
Joshua A. Barry
Talia Kamdjou
Alvin King
Dane Coleal-Bergum
Nicholas R. Franich
Frank M. LaFerla
Joan S. Steffan
Mathew Blurton-Jones
Charles K. Meshul
Gerhard Bauer
Michael S. Levine
Marie-Francoise Chesselet
Leslie M. Thompson
spellingShingle Jack C. Reidling
Aroa Relaño-Ginés
Sandra M. Holley
Joseph Ochaba
Cindy Moore
Brian Fury
Alice Lau
Andrew H. Tran
Sylvia Yeung
Delaram Salamati
Chunni Zhu
Asa Hatami
Carlos Cepeda
Joshua A. Barry
Talia Kamdjou
Alvin King
Dane Coleal-Bergum
Nicholas R. Franich
Frank M. LaFerla
Joan S. Steffan
Mathew Blurton-Jones
Charles K. Meshul
Gerhard Bauer
Michael S. Levine
Marie-Francoise Chesselet
Leslie M. Thompson
Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice
Stem Cell Reports
Huntington's disease
neural stem cell
transplantation
R6/2 mice
Q140 mice
embryonic stem cells
author_facet Jack C. Reidling
Aroa Relaño-Ginés
Sandra M. Holley
Joseph Ochaba
Cindy Moore
Brian Fury
Alice Lau
Andrew H. Tran
Sylvia Yeung
Delaram Salamati
Chunni Zhu
Asa Hatami
Carlos Cepeda
Joshua A. Barry
Talia Kamdjou
Alvin King
Dane Coleal-Bergum
Nicholas R. Franich
Frank M. LaFerla
Joan S. Steffan
Mathew Blurton-Jones
Charles K. Meshul
Gerhard Bauer
Michael S. Levine
Marie-Francoise Chesselet
Leslie M. Thompson
author_sort Jack C. Reidling
title Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice
title_short Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice
title_full Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice
title_fullStr Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice
title_full_unstemmed Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice
title_sort human neural stem cell transplantation rescues functional deficits in r6/2 and q140 huntington's disease mice
publisher Elsevier
series Stem Cell Reports
issn 2213-6711
publishDate 2018-01-01
description Summary: Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP)-grade human embryonic stem cell-derived neural stem cell (hNSC) line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF) in both models. These findings hold promise for future development of stem cell-based therapies.
topic Huntington's disease
neural stem cell
transplantation
R6/2 mice
Q140 mice
embryonic stem cells
url http://www.sciencedirect.com/science/article/pii/S2213671117304915
work_keys_str_mv AT jackcreidling humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT aroarelanogines humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT sandramholley humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT josephochaba humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT cindymoore humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT brianfury humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT alicelau humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT andrewhtran humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT sylviayeung humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT delaramsalamati humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT chunnizhu humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT asahatami humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT carloscepeda humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT joshuaabarry humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT taliakamdjou humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT alvinking humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT danecolealbergum humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT nicholasrfranich humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT frankmlaferla humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT joanssteffan humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT mathewblurtonjones humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT charleskmeshul humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT gerhardbauer humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT michaelslevine humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT mariefrancoisechesselet humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
AT lesliemthompson humanneuralstemcelltransplantationrescuesfunctionaldeficitsinr62andq140huntingtonsdiseasemice
_version_ 1724682117461311488
spelling doaj-6a20e0b98a194e96bbd0862727f88f6d2020-11-25T03:04:14ZengElsevierStem Cell Reports2213-67112018-01-01101587210.1016/j.stemcr.2017.11.005Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease MiceJack C. Reidling0Aroa Relaño-Ginés1Sandra M. Holley2Joseph Ochaba3Cindy Moore4Brian Fury5Alice Lau6Andrew H. Tran7Sylvia Yeung8Delaram Salamati9Chunni Zhu10Asa Hatami11Carlos Cepeda12Joshua A. Barry13Talia Kamdjou14Alvin King15Dane Coleal-Bergum16Nicholas R. Franich17Frank M. LaFerla18Joan S. Steffan19Mathew Blurton-Jones20Charles K. Meshul21Gerhard Bauer22Michael S. Levine23Marie-Francoise Chesselet24Leslie M. Thompson25Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USADepartment of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USAIntellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USADepartment of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USAPortland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USAInstitute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USADepartment of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USAInstitute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USAInstitute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USAInstitute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USADepartment of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USADepartment of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USAIntellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USAIntellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USAIntellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USADepartment of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USAInstitute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USADepartment of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USAInstitute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USAInstitute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USAInstitute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Gross Hall, Room 3219, 845 Health Sciences Road, Irvine, CA 92697, USAPortland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, L470, Portland, OR 97239, USAInstitute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USAIntellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USADepartment of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USAInstitute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Gross Hall, Room 3219, 845 Health Sciences Road, Irvine, CA 92697, USA; Corresponding authorSummary: Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP)-grade human embryonic stem cell-derived neural stem cell (hNSC) line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF) in both models. These findings hold promise for future development of stem cell-based therapies.http://www.sciencedirect.com/science/article/pii/S2213671117304915Huntington's diseaseneural stem celltransplantationR6/2 miceQ140 miceembryonic stem cells