Effects of the TLR4/Myd88/NF-κB Signaling Pathway on NLRP3 Inflammasome in Coronary Microembolization-Induced Myocardial Injury
Background/Aims: Coronary microembolization (CME) is a common complication of acute coronary syndrome (ACS) and percutaneous coronary intervention (PCI); Myocardial inflammation, caused by CME, is the main cause of cardiac injury. TLR4/MyD88/NF-κB signaling plays an important role in the development...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
2018-06-01
|
Series: | Cellular Physiology and Biochemistry |
Subjects: | |
Online Access: | https://www.karger.com/Article/FullText/490866 |
Summary: | Background/Aims: Coronary microembolization (CME) is a common complication of acute coronary syndrome (ACS) and percutaneous coronary intervention (PCI); Myocardial inflammation, caused by CME, is the main cause of cardiac injury. TLR4/MyD88/NF-κB signaling plays an important role in the development of myocardial inflammation, but its effects on CME remain unclear. To assess the cardiac protective effects of TAK-242 (TLR4 specific inhibitor) on CME-induced myocardial injury, and explore the underlying mechanism. Methods: Cardiac function, serum c-troponin I level, microinfarct were examined by cardiac ultrasound, myocardial enzyme assessment, HBFP staining. The levels of TLR4/MyD88/NF-κB signaling and NLRP3 inflammasome pathway were detected by ELISA, qRT-PCR and western blot. Results: The results showed inflammatory responses in the myocardium after CME, with increased expression levels of pro-inflammatory factors TNF-α, IL-1β and IL-18. Meanwhile, TLR4/MyD88/NF-κB signaling and the NLRP3 inflammasome were involved in the inflammatory process. TAK-242 administration before CME effectively inhibited the inflammatory response in the rat myocardium after CME and reduced myocardial injury, mainly by inhibiting TLR4/ MyD88/NF-κB signaling and reducing NLRP3 inflammasome activation. In addition, in vitro assays with neonatal rat cardiomyocytes further confirmed that TLR4/MyD88/NF-κB signaling was significantly activated in the inflammatory response of LPS-induced cardiomyocytes, via activation of the NLRP3 inflammasome. Inhibition of TLR4/MyD88/NF-κB signaling resulted in increased survival of cardiomyocytes mainly by reducing the release of inflammatory cytokines and decreasing NLRP3 inflammasome activation. Conclusions: TLR4/MyD88/NF-κB signaling participates in the inflammatory response of the myocardium after CME, activating the NLRP3 inflammasome, promoting the inflammatory cascade, and aggravating myocardial injury. Blocking TLR4/MyD88/NF-κB signaling may help reduce myocardial injury and improve cardiac function after CME. |
---|---|
ISSN: | 1015-8987 1421-9778 |