Summary: | Mesenchymal stromal cells (MSCs) transiently transfected with notch1 intracellular domain (NICD) are beneficial for neurological disorders as observed in several preclinical studies. Extracellular matrix (ECM) derived from NICD-transfected MSCs has been previously shown to support in vitro neural cell growth and survival better than that of un-transfected MSCs. To understand the underlying mechanism(s) by which NICD-transfected MSC-derived ECM supports neural cell growth and survival, we investigated the differences in NICD-transfected MSC- and MSC-derived ECM protein quantity and composition. To compare the ECM derived from MSCs and NICD-transfected MSCs, the proteins were sequentially solubilized using sodium dodecyl sulfate (SDS) and urea, quantified, and compared across four human donors. We then analyzed ECM proteins using either in-gel digests or in-solution surfactant-assisted trypsin digests (SAISD) coupled with reverse phase nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). Analyses using nLC-MS/MS identified key components of ECM from NICD-transfected MSCs and un-transfected MSCs and revealed significant differences in their respective compositions. This work provides a reproducible method for identifying and comparing in vitro cell-derived ECM proteins, which is crucial for exploring the mechanisms underlying cellular therapy.
|