Electrospun Gelatin Fibers Surface Loaded ZnO Particles as a Potential Biodegradable Antibacterial Wound Dressing

Traditional wound dressings require frequent replacement, are prone to bacterial growth and cause a lot of environmental pollution. Therefore, biodegradable and antibacterial dressings are eagerly desired. In this paper, gelatin/ZnO fibers were first prepared by side-by-side electrospinning for pote...

Full description

Bibliographic Details
Main Authors: Yu Chen, Weipeng Lu, Yanchuan Guo, Yi Zhu, Yeping Song
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/9/4/525
Description
Summary:Traditional wound dressings require frequent replacement, are prone to bacterial growth and cause a lot of environmental pollution. Therefore, biodegradable and antibacterial dressings are eagerly desired. In this paper, gelatin/ZnO fibers were first prepared by side-by-side electrospinning for potential wound dressing materials. The morphology, composition, cytotoxicity and antibacterial activity were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (DLS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and Incucyte&#8482; Zoom system. The results show that ZnO particles are uniformly dispersed on the surface of gelatin fibers and have no cytotoxicity. In addition, the gelatin/ZnO fibers exhibit excellent antibacterial activity against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Escherichia coli</i> (<i>E. coli</i>) with a significant reduction of bacteria to more than 90%. Therefore, such a biodegradable, nontoxic and antibacterial fiber has excellent application prospects in wound dressing.
ISSN:2079-4991