ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?

We assessed the vertical accuracies and uncertainties of three freely-available global DEMs as inputs to elevation-based sea-level rise vulnerability assessment of Mindanao, Philippines – an area where above average SLR of 14.7 mm/year was recently found. These DEMs are the Shut...

Full description

Bibliographic Details
Main Authors: J. R. Santillan, M. Makinano-Santillan
Format: Article
Language:English
Published: Copernicus Publications 2017-09-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W7/543/2017/isprs-archives-XLII-2-W7-543-2017.pdf
id doaj-69b7796a2bcd4c358eef1c33526151c6
record_format Article
spelling doaj-69b7796a2bcd4c358eef1c33526151c62020-11-24T21:45:05ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342017-09-01XLII-2-W754355010.5194/isprs-archives-XLII-2-W7-543-2017ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?J. R. Santillan0J. R. Santillan1M. Makinano-Santillan2M. Makinano-Santillan3Caraga Center for Geo-informatics, College of Engineering and Information Technology, PhilippinesCaraga State University, Butuan City, 8600, Agusan del Norte, PhilippinesCaraga Center for Geo-informatics, College of Engineering and Information Technology, PhilippinesCaraga State University, Butuan City, 8600, Agusan del Norte, PhilippinesWe assessed the vertical accuracies and uncertainties of three freely-available global DEMs as inputs to elevation-based sea-level rise vulnerability assessment of Mindanao, Philippines &ndash; an area where above average SLR of 14.7&thinsp;mm/year was recently found. These DEMs are the Shuttle Radar Topography Mission (SRTM) DEM, ASTER Global DEM (GDEM Version 2), and ALOS World 3D-30 (AW3D30). Using 2,076 ground control points, we computed each DEM’s vertical accuracies and uncertainties, and from these we determined the smallest increment of sea-level rise (SLRI<sub>min</sub>) that should be considered when using the DEMs for SLR impact assessment, as well as the Minimum Planning Timeline (TL<sub>min</sub>) for an elevation-based SLR assessment. Results of vertical accuracy assessment revealed Root Mean Square Errors of 9.80&thinsp;m for ASTER GDEM V2, 5.16&thinsp;m for SRTM DEM, and 4.32&thinsp;m for AW3D30. Vertical uncertainties in terms of the Linear Error at 95&thinsp;% Confidence (LE95) were found to be as follows: 19.21&thinsp;m for ASTER GDEM V2, 10.12 m for SRTM DEM, and 8.47&thinsp;m for AW3D30. From these, we found that ASTER GDEM2 is suitable to model SLR increments of at least 38.41&thinsp;m and it will take 2,613 years for the cumulative water level increase of 14.7&thinsp;mm/year to reach the minimum SLR increment afforded by this DEM. For the SRTM DEM, SLRI<sub>min</sub> and TL<sub>min</sub> were computed as 20.24&thinsp;m and 1,377 years, respectively. For the AW3D30, SLRI<sub>min</sub> and TL<sub>min</sub> were computed as 16.92 m and 1,151 years, respectively. These results suggest that the readily available global DEMs' suitability for mapping coastal inundations due to SLR in our study area is limited by their low vertical accuracies and high uncertainties. All the three DEMs do not have the necessary accuracy and minimum uncertainties that will make them suitable for mapping inundations of Mindanao at smaller increments of SLR (e.g., SLR&thinsp;≤&thinsp;5&thinsp;m). Hence, users who apply any of these DEMs for SLR impact assessment at SLRIs lower than the DEM’s SLRI<sub>min</sub> must be cautious in reporting the areas of SLR vulnerable zones. Reporting the inundated areas as a range instead of a singular value for a given SLR scenario can highlight the inherent accuracy and uncertainty of the DEM used in the assessment.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W7/543/2017/isprs-archives-XLII-2-W7-543-2017.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. R. Santillan
J. R. Santillan
M. Makinano-Santillan
M. Makinano-Santillan
spellingShingle J. R. Santillan
J. R. Santillan
M. Makinano-Santillan
M. Makinano-Santillan
ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet J. R. Santillan
J. R. Santillan
M. Makinano-Santillan
M. Makinano-Santillan
author_sort J. R. Santillan
title ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?
title_short ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?
title_full ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?
title_fullStr ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?
title_full_unstemmed ELEVATION-BASED SEA-LEVEL RISE VULNERABILITY ASSESSMENT OF MINDANAO, PHILIPPINES: ARE FREELY-AVAILABLE 30-M DEMS GOOD ENOUGH?
title_sort elevation-based sea-level rise vulnerability assessment of mindanao, philippines: are freely-available 30-m dems good enough?
publisher Copernicus Publications
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 1682-1750
2194-9034
publishDate 2017-09-01
description We assessed the vertical accuracies and uncertainties of three freely-available global DEMs as inputs to elevation-based sea-level rise vulnerability assessment of Mindanao, Philippines &ndash; an area where above average SLR of 14.7&thinsp;mm/year was recently found. These DEMs are the Shuttle Radar Topography Mission (SRTM) DEM, ASTER Global DEM (GDEM Version 2), and ALOS World 3D-30 (AW3D30). Using 2,076 ground control points, we computed each DEM’s vertical accuracies and uncertainties, and from these we determined the smallest increment of sea-level rise (SLRI<sub>min</sub>) that should be considered when using the DEMs for SLR impact assessment, as well as the Minimum Planning Timeline (TL<sub>min</sub>) for an elevation-based SLR assessment. Results of vertical accuracy assessment revealed Root Mean Square Errors of 9.80&thinsp;m for ASTER GDEM V2, 5.16&thinsp;m for SRTM DEM, and 4.32&thinsp;m for AW3D30. Vertical uncertainties in terms of the Linear Error at 95&thinsp;% Confidence (LE95) were found to be as follows: 19.21&thinsp;m for ASTER GDEM V2, 10.12 m for SRTM DEM, and 8.47&thinsp;m for AW3D30. From these, we found that ASTER GDEM2 is suitable to model SLR increments of at least 38.41&thinsp;m and it will take 2,613 years for the cumulative water level increase of 14.7&thinsp;mm/year to reach the minimum SLR increment afforded by this DEM. For the SRTM DEM, SLRI<sub>min</sub> and TL<sub>min</sub> were computed as 20.24&thinsp;m and 1,377 years, respectively. For the AW3D30, SLRI<sub>min</sub> and TL<sub>min</sub> were computed as 16.92 m and 1,151 years, respectively. These results suggest that the readily available global DEMs' suitability for mapping coastal inundations due to SLR in our study area is limited by their low vertical accuracies and high uncertainties. All the three DEMs do not have the necessary accuracy and minimum uncertainties that will make them suitable for mapping inundations of Mindanao at smaller increments of SLR (e.g., SLR&thinsp;≤&thinsp;5&thinsp;m). Hence, users who apply any of these DEMs for SLR impact assessment at SLRIs lower than the DEM’s SLRI<sub>min</sub> must be cautious in reporting the areas of SLR vulnerable zones. Reporting the inundated areas as a range instead of a singular value for a given SLR scenario can highlight the inherent accuracy and uncertainty of the DEM used in the assessment.
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W7/543/2017/isprs-archives-XLII-2-W7-543-2017.pdf
work_keys_str_mv AT jrsantillan elevationbasedsealevelrisevulnerabilityassessmentofmindanaophilippinesarefreelyavailable30mdemsgoodenough
AT jrsantillan elevationbasedsealevelrisevulnerabilityassessmentofmindanaophilippinesarefreelyavailable30mdemsgoodenough
AT mmakinanosantillan elevationbasedsealevelrisevulnerabilityassessmentofmindanaophilippinesarefreelyavailable30mdemsgoodenough
AT mmakinanosantillan elevationbasedsealevelrisevulnerabilityassessmentofmindanaophilippinesarefreelyavailable30mdemsgoodenough
_version_ 1725906846338777088