CHISC-AC: Compact Highest Subset Confidence-Based Associative Classification

The associative classification method integrates association rule mining and classification. Constructing an efficient classifier with a small set of high quality rules is a highly important but indeed a challenging task. The lazy learning associative classification method successfully removes the n...

Full description

Bibliographic Details
Main Authors: S P Syed Ibrahim, K R Chandran, C J Kabila Kanthasam
Format: Article
Language:English
Published: Ubiquity Press 2014-11-01
Series:Data Science Journal
Subjects:
Online Access:http://datascience.codata.org/articles/10
Description
Summary:The associative classification method integrates association rule mining and classification. Constructing an efficient classifier with a small set of high quality rules is a highly important but indeed a challenging task. The lazy learning associative classification method successfully removes the need for a classifier but suffers from high computation costs. This paper proposes a Compact Highest Subset Confidence-Based Associative Classification scheme that generates compact subsets based on information gain and classifies the new samples without constructing classifiers. Experimental results show that the proposed system out performs both the traditional and the existing lazy learning associative classification methods. −−−−− Paper presented at 1st International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2014) March 27-28, 2014. Organized by VIT University, Chennai, India. Sponsored by BRNS.
ISSN:1683-1470