Comparative evaluation of two physically based models for the description of stress-relaxation behaviour of 9% chromium containing steel

An attempt has been made to evaluate the applicability of two constitutive models related to the dislocation-obstacle interactions for the description of stress-relaxation behaviour of E911 tempered martensitic steel. The first one is Feltham model (Model-I) and the second model proposed by Christop...

Full description

Bibliographic Details
Main Authors: J. Christopher, C. Praveen, B.K. Choudhary
Format: Article
Language:English
Published: Gruppo Italiano Frattura 2019-04-01
Series:Frattura ed Integrità Strutturale
Subjects:
Online Access:https://www.fracturae.com/index.php/fis/article/view/2268/2463
Description
Summary:An attempt has been made to evaluate the applicability of two constitutive models related to the dislocation-obstacle interactions for the description of stress-relaxation behaviour of E911 tempered martensitic steel. The first one is Feltham model (Model-I) and the second model proposed by Christopher and Choudhary (Model-II) is based on the sine hyperbolic kinetic rate formulation coupled with the evolution of internal stress. The physical constants associated with these models have been determined by the minimization of errors between experimental and predicted relaxation stress vs. hold time data for two different strain hold levels of 1.3 and 2.5% at 873 K for E911 steel. Model-II provides better prediction of stress-relaxation behaviour of the steel as compared to Model-I. In addition to prediction of relaxation stress vs. hold time data, Model-II describes the evolution of internal stress, inter-barrier spacing and activation volume with the hold time. The predicted increase in inter-barrier spacing and activation volume with hold time indicated that substructural coarsening remains dominant in E911 steel under stress-relaxation conditions.
ISSN:1971-8993