ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULA

Value at Risk explains the magnitude of the worst losses occurred in financial products investments with a certain level of confidence and time interval. The purpose of this study is to estimate the VaR of portfolio using Archimedean Copula family. The methods for calculating the VaR are as follows:...

Full description

Bibliographic Details
Main Authors: AULIA ATIKA PRAWIBTA SUHARTO, KOMANG DHARMAWAN, I WAYAN SUMARJAYA
Format: Article
Language:English
Published: Universitas Udayana 2017-01-01
Series:E-Jurnal Matematika
Subjects:
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/27155
id doaj-69910f5a5696411ca6021b2a76ce761c
record_format Article
spelling doaj-69910f5a5696411ca6021b2a76ce761c2020-11-24T22:25:05ZengUniversitas UdayanaE-Jurnal Matematika2303-17512017-01-0161152110.24843/MTK.2017.v06.i01.p14327155ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULAAULIA ATIKA PRAWIBTA SUHARTO0KOMANG DHARMAWAN1I WAYAN SUMARJAYA2Faculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana UniversityFaculty of Mathematics and Natural Sciences, Udayana UniversityValue at Risk explains the magnitude of the worst losses occurred in financial products investments with a certain level of confidence and time interval. The purpose of this study is to estimate the VaR of portfolio using Archimedean Copula family. The methods for calculating the VaR are as follows: (1) calculating the stock return; (2) calculating descriptive statistics of return; (3) checking for the nature of autocorrelation and heteroscedasticity effects on stock return data; (4) checking for the presence of extreme value by using Pareto tail; (5) estimating the parameters of Achimedean Copula family; (6) conducting simulations of Archimedean Copula; (7) estimating the value of the stock portfolio VaR. This study uses the closing price of TLKM and GGRM. At 90% the VaR obtained using Clayton, Gumbel, Frank copulas are 0.9562%, 1.0189%, 0.9827% respectively. At 95% the VaR obtained using Clayton, Gumbel, Frank copulas are 1.2930%, 1.2522%, 1.3152% respectively. At 99% the VaR obtained using Clayton, Gumbel, Frank copulas are 2.0327%, 1.9164%, is 1.8678% respectively. In conclusion estimation of VaR using Clayton copula yields the highest VaR.https://ojs.unud.ac.id/index.php/mtk/article/view/27155PortfolioValue at RiskCopulaArhimedean Copula
collection DOAJ
language English
format Article
sources DOAJ
author AULIA ATIKA PRAWIBTA SUHARTO
KOMANG DHARMAWAN
I WAYAN SUMARJAYA
spellingShingle AULIA ATIKA PRAWIBTA SUHARTO
KOMANG DHARMAWAN
I WAYAN SUMARJAYA
ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULA
E-Jurnal Matematika
Portfolio
Value at Risk
Copula
Arhimedean Copula
author_facet AULIA ATIKA PRAWIBTA SUHARTO
KOMANG DHARMAWAN
I WAYAN SUMARJAYA
author_sort AULIA ATIKA PRAWIBTA SUHARTO
title ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULA
title_short ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULA
title_full ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULA
title_fullStr ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULA
title_full_unstemmed ESTIMASI NILAI VaR PORTOFOLIO MENGGUNAKAN FUNGSI ARCHIMEDEAN COPULA
title_sort estimasi nilai var portofolio menggunakan fungsi archimedean copula
publisher Universitas Udayana
series E-Jurnal Matematika
issn 2303-1751
publishDate 2017-01-01
description Value at Risk explains the magnitude of the worst losses occurred in financial products investments with a certain level of confidence and time interval. The purpose of this study is to estimate the VaR of portfolio using Archimedean Copula family. The methods for calculating the VaR are as follows: (1) calculating the stock return; (2) calculating descriptive statistics of return; (3) checking for the nature of autocorrelation and heteroscedasticity effects on stock return data; (4) checking for the presence of extreme value by using Pareto tail; (5) estimating the parameters of Achimedean Copula family; (6) conducting simulations of Archimedean Copula; (7) estimating the value of the stock portfolio VaR. This study uses the closing price of TLKM and GGRM. At 90% the VaR obtained using Clayton, Gumbel, Frank copulas are 0.9562%, 1.0189%, 0.9827% respectively. At 95% the VaR obtained using Clayton, Gumbel, Frank copulas are 1.2930%, 1.2522%, 1.3152% respectively. At 99% the VaR obtained using Clayton, Gumbel, Frank copulas are 2.0327%, 1.9164%, is 1.8678% respectively. In conclusion estimation of VaR using Clayton copula yields the highest VaR.
topic Portfolio
Value at Risk
Copula
Arhimedean Copula
url https://ojs.unud.ac.id/index.php/mtk/article/view/27155
work_keys_str_mv AT auliaatikaprawibtasuharto estimasinilaivarportofoliomenggunakanfungsiarchimedeancopula
AT komangdharmawan estimasinilaivarportofoliomenggunakanfungsiarchimedeancopula
AT iwayansumarjaya estimasinilaivarportofoliomenggunakanfungsiarchimedeancopula
_version_ 1725759499862540288