The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.

In the gray mold fungus Botrytis cinerea the Gα subunit Bcg1 of a heterotrimeric G protein is an upstream activator of the Ca(2+)/calmodulin-dependent phosphatase calcineurin. In this study we focused on the functional characterization of the catalytic subunit of calcineurin (BcCnA) and its putative...

Full description

Bibliographic Details
Main Authors: Karin Harren, Julia Schumacher, Bettina Tudzynski
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3402410?pdf=render
id doaj-698e739887194849b1ca6da0558a3637
record_format Article
spelling doaj-698e739887194849b1ca6da0558a36372020-11-25T01:00:10ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0177e4176110.1371/journal.pone.0041761The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.Karin HarrenJulia SchumacherBettina TudzynskiIn the gray mold fungus Botrytis cinerea the Gα subunit Bcg1 of a heterotrimeric G protein is an upstream activator of the Ca(2+)/calmodulin-dependent phosphatase calcineurin. In this study we focused on the functional characterization of the catalytic subunit of calcineurin (BcCnA) and its putative regulator calcipressin (BcRcn1). We deleted the genes encoding both proteins to examine their role concerning growth, differentiation and virulence. The ΔbccnA mutant shows a severe growth defect, does not produce conidia and is avirulent, while the loss of BcRcn1 caused retardation of hyphal growth and delayed infection of host plants, but had no impact on conidiation and sclerotia formation. Expression of several calcineurin-dependent genes and bccnA itself is positively affected by BcRcn1. Complementation of the Δbcrcn1 mutant with a GFP-BcRcn1 fusion construct revealed that BcRcn1 is localized in the cytoplasm and accumulates around the nuclei. Furthermore, we showed that BcCnA physically interacts with BcRcn1 and the regulatory subunit of calcineurin, BcCnB. We investigated the impact of several protein domains characteristic for modulation and activation of BcCnA via BcRcn1, such as the phosphorylation sites and the calcineurin-docking site, by physical interaction studies between BcCnA and wild-type and mutated copies of BcRcn1. Based on the observed phenotypes we conclude that BcRcn1 acts as a positive modulator of BcCnA and the Ca(2+)/calcineurin-mediated signal transduction in B. cinerea, and that both proteins regulate fungal development and virulence.http://europepmc.org/articles/PMC3402410?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Karin Harren
Julia Schumacher
Bettina Tudzynski
spellingShingle Karin Harren
Julia Schumacher
Bettina Tudzynski
The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
PLoS ONE
author_facet Karin Harren
Julia Schumacher
Bettina Tudzynski
author_sort Karin Harren
title The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
title_short The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
title_full The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
title_fullStr The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
title_full_unstemmed The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
title_sort ca2+/calcineurin-dependent signaling pathway in the gray mold botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2012-01-01
description In the gray mold fungus Botrytis cinerea the Gα subunit Bcg1 of a heterotrimeric G protein is an upstream activator of the Ca(2+)/calmodulin-dependent phosphatase calcineurin. In this study we focused on the functional characterization of the catalytic subunit of calcineurin (BcCnA) and its putative regulator calcipressin (BcRcn1). We deleted the genes encoding both proteins to examine their role concerning growth, differentiation and virulence. The ΔbccnA mutant shows a severe growth defect, does not produce conidia and is avirulent, while the loss of BcRcn1 caused retardation of hyphal growth and delayed infection of host plants, but had no impact on conidiation and sclerotia formation. Expression of several calcineurin-dependent genes and bccnA itself is positively affected by BcRcn1. Complementation of the Δbcrcn1 mutant with a GFP-BcRcn1 fusion construct revealed that BcRcn1 is localized in the cytoplasm and accumulates around the nuclei. Furthermore, we showed that BcCnA physically interacts with BcRcn1 and the regulatory subunit of calcineurin, BcCnB. We investigated the impact of several protein domains characteristic for modulation and activation of BcCnA via BcRcn1, such as the phosphorylation sites and the calcineurin-docking site, by physical interaction studies between BcCnA and wild-type and mutated copies of BcRcn1. Based on the observed phenotypes we conclude that BcRcn1 acts as a positive modulator of BcCnA and the Ca(2+)/calcineurin-mediated signal transduction in B. cinerea, and that both proteins regulate fungal development and virulence.
url http://europepmc.org/articles/PMC3402410?pdf=render
work_keys_str_mv AT karinharren theca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity
AT juliaschumacher theca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity
AT bettinatudzynski theca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity
AT karinharren ca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity
AT juliaschumacher ca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity
AT bettinatudzynski ca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity
_version_ 1725214834723651584