The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.
In the gray mold fungus Botrytis cinerea the Gα subunit Bcg1 of a heterotrimeric G protein is an upstream activator of the Ca(2+)/calmodulin-dependent phosphatase calcineurin. In this study we focused on the functional characterization of the catalytic subunit of calcineurin (BcCnA) and its putative...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3402410?pdf=render |
id |
doaj-698e739887194849b1ca6da0558a3637 |
---|---|
record_format |
Article |
spelling |
doaj-698e739887194849b1ca6da0558a36372020-11-25T01:00:10ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0177e4176110.1371/journal.pone.0041761The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity.Karin HarrenJulia SchumacherBettina TudzynskiIn the gray mold fungus Botrytis cinerea the Gα subunit Bcg1 of a heterotrimeric G protein is an upstream activator of the Ca(2+)/calmodulin-dependent phosphatase calcineurin. In this study we focused on the functional characterization of the catalytic subunit of calcineurin (BcCnA) and its putative regulator calcipressin (BcRcn1). We deleted the genes encoding both proteins to examine their role concerning growth, differentiation and virulence. The ΔbccnA mutant shows a severe growth defect, does not produce conidia and is avirulent, while the loss of BcRcn1 caused retardation of hyphal growth and delayed infection of host plants, but had no impact on conidiation and sclerotia formation. Expression of several calcineurin-dependent genes and bccnA itself is positively affected by BcRcn1. Complementation of the Δbcrcn1 mutant with a GFP-BcRcn1 fusion construct revealed that BcRcn1 is localized in the cytoplasm and accumulates around the nuclei. Furthermore, we showed that BcCnA physically interacts with BcRcn1 and the regulatory subunit of calcineurin, BcCnB. We investigated the impact of several protein domains characteristic for modulation and activation of BcCnA via BcRcn1, such as the phosphorylation sites and the calcineurin-docking site, by physical interaction studies between BcCnA and wild-type and mutated copies of BcRcn1. Based on the observed phenotypes we conclude that BcRcn1 acts as a positive modulator of BcCnA and the Ca(2+)/calcineurin-mediated signal transduction in B. cinerea, and that both proteins regulate fungal development and virulence.http://europepmc.org/articles/PMC3402410?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Karin Harren Julia Schumacher Bettina Tudzynski |
spellingShingle |
Karin Harren Julia Schumacher Bettina Tudzynski The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. PLoS ONE |
author_facet |
Karin Harren Julia Schumacher Bettina Tudzynski |
author_sort |
Karin Harren |
title |
The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. |
title_short |
The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. |
title_full |
The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. |
title_fullStr |
The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. |
title_full_unstemmed |
The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. |
title_sort |
ca2+/calcineurin-dependent signaling pathway in the gray mold botrytis cinerea: the role of calcipressin in modulating calcineurin activity. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2012-01-01 |
description |
In the gray mold fungus Botrytis cinerea the Gα subunit Bcg1 of a heterotrimeric G protein is an upstream activator of the Ca(2+)/calmodulin-dependent phosphatase calcineurin. In this study we focused on the functional characterization of the catalytic subunit of calcineurin (BcCnA) and its putative regulator calcipressin (BcRcn1). We deleted the genes encoding both proteins to examine their role concerning growth, differentiation and virulence. The ΔbccnA mutant shows a severe growth defect, does not produce conidia and is avirulent, while the loss of BcRcn1 caused retardation of hyphal growth and delayed infection of host plants, but had no impact on conidiation and sclerotia formation. Expression of several calcineurin-dependent genes and bccnA itself is positively affected by BcRcn1. Complementation of the Δbcrcn1 mutant with a GFP-BcRcn1 fusion construct revealed that BcRcn1 is localized in the cytoplasm and accumulates around the nuclei. Furthermore, we showed that BcCnA physically interacts with BcRcn1 and the regulatory subunit of calcineurin, BcCnB. We investigated the impact of several protein domains characteristic for modulation and activation of BcCnA via BcRcn1, such as the phosphorylation sites and the calcineurin-docking site, by physical interaction studies between BcCnA and wild-type and mutated copies of BcRcn1. Based on the observed phenotypes we conclude that BcRcn1 acts as a positive modulator of BcCnA and the Ca(2+)/calcineurin-mediated signal transduction in B. cinerea, and that both proteins regulate fungal development and virulence. |
url |
http://europepmc.org/articles/PMC3402410?pdf=render |
work_keys_str_mv |
AT karinharren theca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity AT juliaschumacher theca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity AT bettinatudzynski theca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity AT karinharren ca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity AT juliaschumacher ca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity AT bettinatudzynski ca2calcineurindependentsignalingpathwayinthegraymoldbotrytiscinereatheroleofcalcipressininmodulatingcalcineurinactivity |
_version_ |
1725214834723651584 |