Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional Equations

The fractional derivatives in the sense of the modified Riemann-Liouville derivative and Feng’s first integral method are employed to obtain the exact solutions of the nonlinear space-time fractional ZKBBM equation and the nonlinear space-time fractional generalized Fisher equation. The power of thi...

Full description

Bibliographic Details
Main Authors: Huitzilin Yépez-Martínez, Ivan O. Sosa, Juan M. Reyes
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2015/191545
id doaj-698dd70a995d4cff99338bf2ef0122af
record_format Article
spelling doaj-698dd70a995d4cff99338bf2ef0122af2020-11-25T00:36:22ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422015-01-01201510.1155/2015/191545191545Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional EquationsHuitzilin Yépez-Martínez0Ivan O. Sosa1Juan M. Reyes2Universidad Autónoma de la Ciudad de México, Prolongación San Isidro 151, Colonia San Lorenzo Tezonco, Delegación Iztapalapa, 09790 México DF, MexicoUniversidad Autónoma de la Ciudad de México, Prolongación San Isidro 151, Colonia San Lorenzo Tezonco, Delegación Iztapalapa, 09790 México DF, MexicoUniversidad Autónoma de la Ciudad de México, Prolongación San Isidro 151, Colonia San Lorenzo Tezonco, Delegación Iztapalapa, 09790 México DF, MexicoThe fractional derivatives in the sense of the modified Riemann-Liouville derivative and Feng’s first integral method are employed to obtain the exact solutions of the nonlinear space-time fractional ZKBBM equation and the nonlinear space-time fractional generalized Fisher equation. The power of this manageable method is presented by applying it to the above equations. Our approach provides first integrals in polynomial form with high accuracy. Exact analytical solutions are obtained through establishing first integrals. The present method is efficient and reliable, and it can be used as an alternative to establish new solutions of different types of fractional differential equations applied in mathematical physics.http://dx.doi.org/10.1155/2015/191545
collection DOAJ
language English
format Article
sources DOAJ
author Huitzilin Yépez-Martínez
Ivan O. Sosa
Juan M. Reyes
spellingShingle Huitzilin Yépez-Martínez
Ivan O. Sosa
Juan M. Reyes
Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional Equations
Journal of Applied Mathematics
author_facet Huitzilin Yépez-Martínez
Ivan O. Sosa
Juan M. Reyes
author_sort Huitzilin Yépez-Martínez
title Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional Equations
title_short Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional Equations
title_full Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional Equations
title_fullStr Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional Equations
title_full_unstemmed Feng’s First Integral Method Applied to the ZKBBM and the Generalized Fisher Space-Time Fractional Equations
title_sort feng’s first integral method applied to the zkbbm and the generalized fisher space-time fractional equations
publisher Hindawi Limited
series Journal of Applied Mathematics
issn 1110-757X
1687-0042
publishDate 2015-01-01
description The fractional derivatives in the sense of the modified Riemann-Liouville derivative and Feng’s first integral method are employed to obtain the exact solutions of the nonlinear space-time fractional ZKBBM equation and the nonlinear space-time fractional generalized Fisher equation. The power of this manageable method is presented by applying it to the above equations. Our approach provides first integrals in polynomial form with high accuracy. Exact analytical solutions are obtained through establishing first integrals. The present method is efficient and reliable, and it can be used as an alternative to establish new solutions of different types of fractional differential equations applied in mathematical physics.
url http://dx.doi.org/10.1155/2015/191545
work_keys_str_mv AT huitzilinyepezmartinez fengsfirstintegralmethodappliedtothezkbbmandthegeneralizedfisherspacetimefractionalequations
AT ivanososa fengsfirstintegralmethodappliedtothezkbbmandthegeneralizedfisherspacetimefractionalequations
AT juanmreyes fengsfirstintegralmethodappliedtothezkbbmandthegeneralizedfisherspacetimefractionalequations
_version_ 1725305723725807616