A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques

This paper proposes a methodology for dealing with an issue of crucial practical importance in real engineering systems such as fault detection and recovery of a sensor. The main goal is to define a strategy to identify a malfunctioning sensor and to establish the correct measurement value in those...

Full description

Bibliographic Details
Main Authors: Héctor Aláiz-Moretón, Manuel Castejón-Limas, José-Luis Casteleiro-Roca, Esteban Jove, Laura Fernández Robles, José Luis Calvo-Rolle
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/12/2740
id doaj-69872cf2167a4dd28f4d79fcd1efc0b6
record_format Article
spelling doaj-69872cf2167a4dd28f4d79fcd1efc0b62020-11-24T21:37:15ZengMDPI AGSensors1424-82202019-06-011912274010.3390/s19122740s19122740A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent TechniquesHéctor Aláiz-Moretón0Manuel Castejón-Limas1José-Luis Casteleiro-Roca2Esteban Jove3Laura Fernández Robles4José Luis Calvo-Rolle5Departamento de Ingeniería de Sistemas y Automática, Universidad de León, 24071 León, SpainDepartamento de Ingenierías Mecánica, Informática y Aeroespacial, Universidad de León, 24071 León, SpainDepartamento de Ingeniería Industrial, Universidade da Coruña, 15405 Ferrol, SpainDepartamento de Ingeniería Industrial, Universidade da Coruña, 15405 Ferrol, SpainDepartamento de Ingenierías Mecánica, Informática y Aeroespacial, Universidad de León, 24071 León, SpainDepartamento de Ingeniería Industrial, Universidade da Coruña, 15405 Ferrol, SpainThis paper proposes a methodology for dealing with an issue of crucial practical importance in real engineering systems such as fault detection and recovery of a sensor. The main goal is to define a strategy to identify a malfunctioning sensor and to establish the correct measurement value in those cases. As study case, we use the data collected from a geothermal heat exchanger installed as part of the heat pump installation in a bioclimatic house. The sensor behaviour is modeled by using six different machine learning techniques: Random decision forests, gradient boosting, extremely randomized trees, adaptive boosting, k-nearest neighbors, and shallow neural networks. The achieved results suggest that this methodology is a very satisfactory solution for this kind of systems.https://www.mdpi.com/1424-8220/19/12/2740fault detectiongeothermal heat exchangerrandom decision forestsgradient boostingextremely randomized treesadaptive boostingk-nearest neighborsshallow neural networks
collection DOAJ
language English
format Article
sources DOAJ
author Héctor Aláiz-Moretón
Manuel Castejón-Limas
José-Luis Casteleiro-Roca
Esteban Jove
Laura Fernández Robles
José Luis Calvo-Rolle
spellingShingle Héctor Aláiz-Moretón
Manuel Castejón-Limas
José-Luis Casteleiro-Roca
Esteban Jove
Laura Fernández Robles
José Luis Calvo-Rolle
A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques
Sensors
fault detection
geothermal heat exchanger
random decision forests
gradient boosting
extremely randomized trees
adaptive boosting
k-nearest neighbors
shallow neural networks
author_facet Héctor Aláiz-Moretón
Manuel Castejón-Limas
José-Luis Casteleiro-Roca
Esteban Jove
Laura Fernández Robles
José Luis Calvo-Rolle
author_sort Héctor Aláiz-Moretón
title A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques
title_short A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques
title_full A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques
title_fullStr A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques
title_full_unstemmed A Fault Detection System for a Geothermal Heat Exchanger Sensor Based on Intelligent Techniques
title_sort fault detection system for a geothermal heat exchanger sensor based on intelligent techniques
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2019-06-01
description This paper proposes a methodology for dealing with an issue of crucial practical importance in real engineering systems such as fault detection and recovery of a sensor. The main goal is to define a strategy to identify a malfunctioning sensor and to establish the correct measurement value in those cases. As study case, we use the data collected from a geothermal heat exchanger installed as part of the heat pump installation in a bioclimatic house. The sensor behaviour is modeled by using six different machine learning techniques: Random decision forests, gradient boosting, extremely randomized trees, adaptive boosting, k-nearest neighbors, and shallow neural networks. The achieved results suggest that this methodology is a very satisfactory solution for this kind of systems.
topic fault detection
geothermal heat exchanger
random decision forests
gradient boosting
extremely randomized trees
adaptive boosting
k-nearest neighbors
shallow neural networks
url https://www.mdpi.com/1424-8220/19/12/2740
work_keys_str_mv AT hectoralaizmoreton afaultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT manuelcastejonlimas afaultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT joseluiscasteleiroroca afaultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT estebanjove afaultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT laurafernandezrobles afaultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT joseluiscalvorolle afaultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT hectoralaizmoreton faultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT manuelcastejonlimas faultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT joseluiscasteleiroroca faultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT estebanjove faultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT laurafernandezrobles faultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
AT joseluiscalvorolle faultdetectionsystemforageothermalheatexchangersensorbasedonintelligenttechniques
_version_ 1725937447091568640