The necessary length of carbon nanotubes required to optimize solar cells
<p>Abstract</p> <p>Background</p> <p>In recent years scientists have been trying both to increase the efficiency of solar cells, whilst at the same time reducing dimensions and costs. Increases in efficiency have been brought about by implanting carbon nanotubes onto th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2007-10-01
|
Series: | Chemistry Central Journal |
Online Access: | http://journal.chemistrycentral.com/content/1/1/22 |
id |
doaj-6976ab80e5b949439117dc0b095277eb |
---|---|
record_format |
Article |
spelling |
doaj-6976ab80e5b949439117dc0b095277eb2021-08-02T12:21:00ZengBMCChemistry Central Journal1752-153X2007-10-01112210.1186/1752-153X-1-22The necessary length of carbon nanotubes required to optimize solar cellsBarghi TirdadSaeedi MohammadVaezzadeh MajidSadeghi Mohammad<p>Abstract</p> <p>Background</p> <p>In recent years scientists have been trying both to increase the efficiency of solar cells, whilst at the same time reducing dimensions and costs. Increases in efficiency have been brought about by implanting carbon nanotubes onto the surface of solar cells in order to reduce the reflection of sunrays, as well as through the insertion of polymeric arrays into the intrinsic layer for charge separation.</p> <p>Results</p> <p>The experimental results show power rising linearly for intrinsic layer thicknesses between 0–50 nm. Wider thicknesses increase the possibility of recombination of electrons and holes, leading to perturbation of the linear behaviour of output power. This effect is studied and formulated as a function of thickness. Recognition of the critical intrinsic layer thickness can permit one to determine the length of carbon nanotube necessary for optimizing solar cells.</p> <p>Conclusion</p> <p>In this study the behaviour of output power as a function of intrinsic layer thicknesses has been described physically and also simulated. In addition, the implantation of carbon nanotubes into the intrinsic layer and the necessary nanotube length required to optimize solar cells have been suggested.</p> http://journal.chemistrycentral.com/content/1/1/22 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Barghi Tirdad Saeedi Mohammad Vaezzadeh Majid Sadeghi Mohammad |
spellingShingle |
Barghi Tirdad Saeedi Mohammad Vaezzadeh Majid Sadeghi Mohammad The necessary length of carbon nanotubes required to optimize solar cells Chemistry Central Journal |
author_facet |
Barghi Tirdad Saeedi Mohammad Vaezzadeh Majid Sadeghi Mohammad |
author_sort |
Barghi Tirdad |
title |
The necessary length of carbon nanotubes required to optimize solar cells |
title_short |
The necessary length of carbon nanotubes required to optimize solar cells |
title_full |
The necessary length of carbon nanotubes required to optimize solar cells |
title_fullStr |
The necessary length of carbon nanotubes required to optimize solar cells |
title_full_unstemmed |
The necessary length of carbon nanotubes required to optimize solar cells |
title_sort |
necessary length of carbon nanotubes required to optimize solar cells |
publisher |
BMC |
series |
Chemistry Central Journal |
issn |
1752-153X |
publishDate |
2007-10-01 |
description |
<p>Abstract</p> <p>Background</p> <p>In recent years scientists have been trying both to increase the efficiency of solar cells, whilst at the same time reducing dimensions and costs. Increases in efficiency have been brought about by implanting carbon nanotubes onto the surface of solar cells in order to reduce the reflection of sunrays, as well as through the insertion of polymeric arrays into the intrinsic layer for charge separation.</p> <p>Results</p> <p>The experimental results show power rising linearly for intrinsic layer thicknesses between 0–50 nm. Wider thicknesses increase the possibility of recombination of electrons and holes, leading to perturbation of the linear behaviour of output power. This effect is studied and formulated as a function of thickness. Recognition of the critical intrinsic layer thickness can permit one to determine the length of carbon nanotube necessary for optimizing solar cells.</p> <p>Conclusion</p> <p>In this study the behaviour of output power as a function of intrinsic layer thicknesses has been described physically and also simulated. In addition, the implantation of carbon nanotubes into the intrinsic layer and the necessary nanotube length required to optimize solar cells have been suggested.</p> |
url |
http://journal.chemistrycentral.com/content/1/1/22 |
work_keys_str_mv |
AT barghitirdad thenecessarylengthofcarbonnanotubesrequiredtooptimizesolarcells AT saeedimohammad thenecessarylengthofcarbonnanotubesrequiredtooptimizesolarcells AT vaezzadehmajid thenecessarylengthofcarbonnanotubesrequiredtooptimizesolarcells AT sadeghimohammad thenecessarylengthofcarbonnanotubesrequiredtooptimizesolarcells AT barghitirdad necessarylengthofcarbonnanotubesrequiredtooptimizesolarcells AT saeedimohammad necessarylengthofcarbonnanotubesrequiredtooptimizesolarcells AT vaezzadehmajid necessarylengthofcarbonnanotubesrequiredtooptimizesolarcells AT sadeghimohammad necessarylengthofcarbonnanotubesrequiredtooptimizesolarcells |
_version_ |
1721232624149594112 |