The limiting equation for Neumann Laplacians on shrinking domains

Let ${Omega_{epsilon} }_{0 < epsilon le1}$ be an indexed family of connected open sets in ${mathbb R}^2$, that shrinks to a tree $Gamma$ as $epsilon$ approaches zero. Let $H_{Omega_{epsilon}}$ be the Neumann Laplacian and $f_{epsilon}$ be the restriction of an $L^2(Omega_1)$ function to $Omega_{e...

Full description

Bibliographic Details
Main Author: Yoshimi Saito
Format: Article
Language:English
Published: Texas State University 2000-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2000/31/abstr.html

Similar Items