Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution

This work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the...

Full description

Bibliographic Details
Main Authors: C. K. Carbajal Henken, L. Doppler, R. Lindstrot, R. Preusker, J. Fischer
Format: Article
Language:English
Published: Copernicus Publications 2015-08-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/8/3419/2015/amt-8-3419-2015.pdf
id doaj-69584c916883466fb0646624b1af2c1b
record_format Article
spelling doaj-69584c916883466fb0646624b1af2c1b2020-11-25T00:31:07ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482015-08-01883419343110.5194/amt-8-3419-2015Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distributionC. K. Carbajal Henken0L. Doppler1R. Lindstrot2R. Preusker3J. Fischer4Institute for Space Sciences, Freie Universität Berlin (FUB), Berlin, GermanyDeutscher Wetterdienst, Meteorologisches Observatorium Lindenberg, Richard Assmann Observatorium (DWD, MOL-RAO), Lindenberg, GermanyEUMETSAT, Eumetsat-Allee 1, Darmstadt, GermanyInstitute for Space Sciences, Freie Universität Berlin (FUB), Berlin, GermanyInstitute for Space Sciences, Freie Universität Berlin (FUB), Berlin, GermanyThis work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the Freie Universität Berlin AATSR MERIS Cloud (FAME-C) algorithm, are based on independent measurements and different retrieval techniques. First, cloud-top temperature (CTT) is retrieved from Advanced Along Track Scanning Radiometer (AATSR) measurements in the thermal infrared. Second, cloud-top pressure (CTP) is retrieved from Medium Resolution Imaging Spectrometer (MERIS) measurements in the oxygen-A absorption band and a nearby window channel. Both CTT and CTP are converted to cloud-top height (CTH) using atmospheric profiles from a numerical weather prediction model. First, a sensitivity study using radiative transfer simulations in the near-infrared and thermal infrared was performed to demonstrate, in a quantitative manner, the larger impact of the assumed cloud vertical extinction profile, described in terms of shape and vertical extent, on MERIS than on AATSR top-of-atmosphere measurements. Consequently, cloud vertical extinction profiles will have a larger influence on the MERIS than on the AATSR cloud height retrievals for most cloud types. Second, the difference in retrieved CTH (ΔCTH) from AATSR and MERIS are related to cloud vertical extent (CVE), as observed by ground-based lidar and radar at three ARM sites. To increase the impact of the cloud vertical extinction profile on the MERIS-CTP retrievals, single-layer and geometrically thin clouds are assumed in the forward model. Similarly to previous findings, the MERIS-CTP retrievals appear to be close to pressure levels in the middle of the cloud. Assuming a linear relationship, the ΔCTH multiplied by 2.5 gives an estimate on the CVE for single-layer clouds. The relationship is stronger for single-layer clouds than for multi-layer clouds. Due to large variations of cloud vertical extinction profiles occurring in nature, a quantitative estimate of the cloud vertical extent is accompanied with large uncertainties. Yet, estimates of the CVE provide an additional parameter, next to CTH, that can be obtained from passive imager measurements and can be used to further describe cloud vertical distribution, thus contributing to the characterization of a cloudy scene. To further demonstrate the plausibility of the approach, an estimate of the CVE was applied to a case study. In light of the follow-up mission Sentinel-3 with AATSR and MERIS like instruments, Sea and Land Surface Temperature Radiometer (SLSTR) and (Ocean and Land Colour Instrument) OLCI, respectively, for which the FAME-C algorithm can be easily adapted, a more accurate estimate of the CVE can be expected. OLCI will have three channels in the oxygen-A absorption band, possibly providing enhanced information on cloud vertical distributions.http://www.atmos-meas-tech.net/8/3419/2015/amt-8-3419-2015.pdf
collection DOAJ
language English
format Article
sources DOAJ
author C. K. Carbajal Henken
L. Doppler
R. Lindstrot
R. Preusker
J. Fischer
spellingShingle C. K. Carbajal Henken
L. Doppler
R. Lindstrot
R. Preusker
J. Fischer
Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution
Atmospheric Measurement Techniques
author_facet C. K. Carbajal Henken
L. Doppler
R. Lindstrot
R. Preusker
J. Fischer
author_sort C. K. Carbajal Henken
title Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution
title_short Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution
title_full Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution
title_fullStr Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution
title_full_unstemmed Exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution
title_sort exploiting the sensitivity of two satellite cloud height retrievals to cloud vertical distribution
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2015-08-01
description This work presents a study on the sensitivity of two satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity is exploited by relating the difference in the retrieved cloud heights to cloud vertical extent. The two cloud height retrievals, performed within the Freie Universität Berlin AATSR MERIS Cloud (FAME-C) algorithm, are based on independent measurements and different retrieval techniques. First, cloud-top temperature (CTT) is retrieved from Advanced Along Track Scanning Radiometer (AATSR) measurements in the thermal infrared. Second, cloud-top pressure (CTP) is retrieved from Medium Resolution Imaging Spectrometer (MERIS) measurements in the oxygen-A absorption band and a nearby window channel. Both CTT and CTP are converted to cloud-top height (CTH) using atmospheric profiles from a numerical weather prediction model. First, a sensitivity study using radiative transfer simulations in the near-infrared and thermal infrared was performed to demonstrate, in a quantitative manner, the larger impact of the assumed cloud vertical extinction profile, described in terms of shape and vertical extent, on MERIS than on AATSR top-of-atmosphere measurements. Consequently, cloud vertical extinction profiles will have a larger influence on the MERIS than on the AATSR cloud height retrievals for most cloud types. Second, the difference in retrieved CTH (ΔCTH) from AATSR and MERIS are related to cloud vertical extent (CVE), as observed by ground-based lidar and radar at three ARM sites. To increase the impact of the cloud vertical extinction profile on the MERIS-CTP retrievals, single-layer and geometrically thin clouds are assumed in the forward model. Similarly to previous findings, the MERIS-CTP retrievals appear to be close to pressure levels in the middle of the cloud. Assuming a linear relationship, the ΔCTH multiplied by 2.5 gives an estimate on the CVE for single-layer clouds. The relationship is stronger for single-layer clouds than for multi-layer clouds. Due to large variations of cloud vertical extinction profiles occurring in nature, a quantitative estimate of the cloud vertical extent is accompanied with large uncertainties. Yet, estimates of the CVE provide an additional parameter, next to CTH, that can be obtained from passive imager measurements and can be used to further describe cloud vertical distribution, thus contributing to the characterization of a cloudy scene. To further demonstrate the plausibility of the approach, an estimate of the CVE was applied to a case study. In light of the follow-up mission Sentinel-3 with AATSR and MERIS like instruments, Sea and Land Surface Temperature Radiometer (SLSTR) and (Ocean and Land Colour Instrument) OLCI, respectively, for which the FAME-C algorithm can be easily adapted, a more accurate estimate of the CVE can be expected. OLCI will have three channels in the oxygen-A absorption band, possibly providing enhanced information on cloud vertical distributions.
url http://www.atmos-meas-tech.net/8/3419/2015/amt-8-3419-2015.pdf
work_keys_str_mv AT ckcarbajalhenken exploitingthesensitivityoftwosatellitecloudheightretrievalstocloudverticaldistribution
AT ldoppler exploitingthesensitivityoftwosatellitecloudheightretrievalstocloudverticaldistribution
AT rlindstrot exploitingthesensitivityoftwosatellitecloudheightretrievalstocloudverticaldistribution
AT rpreusker exploitingthesensitivityoftwosatellitecloudheightretrievalstocloudverticaldistribution
AT jfischer exploitingthesensitivityoftwosatellitecloudheightretrievalstocloudverticaldistribution
_version_ 1725323588573069312