Summary: | In this work, we propose a mathematical model describing thermal behavior and heating process optimization of solid fuel bread ovens. Numerical simulation leads to temperature profiles of the oven. The design and implementation of an operating prototype permits us to obtain, with type K thermocouples, experimental temperature profiles in some points of the oven. There is a good agreement between the experimental results and those obtained from the numerical simulation of the proposed model. A permanent temperature value of 220 °C is reached in the baking chamber. It is obtained that the energy efficiency of the oven is 49%. Making use of the objective gain function, it is found that the optimal parameters of the oven are the following: 50 W as optimum operating value of the electric power of the blower, 3 m2 as the optimum operating value of the total surface of the baking chamber; and 0.67 as the optimum operating value of the filling factor between the heating chamber and the baking chamber. The developed model serves to better understand the operation, the optimization and to rationally manage energy expenditure related to solid fuel bread ovens in developing countries.
|