OPTIMASI LEARNING RADIAL BASIS FUNCTION NEURAL NETWORK DENGAN EXTENDED KALMAN FILTER

Dalam paper ini dibahas mengenai optimasi Radial Basis Function Neural Network (RBFNN) dengan Extended Kalman Filter. Proses learning RBF dengan Extended Kalman Filter menggunakan parameter bobot pada hidden center RBF yaitu noise proses pada perhitungan bobot hidden center dan noise pengukuran pad...

Full description

Bibliographic Details
Main Authors: Oni Soesanto, Arfan Eko Fahrudin, Dodon T. Nugrahadi
Format: Article
Language:Indonesian
Published: Universitas Lambung Mangkurat 2015-09-01
Series:KLIK: Kumpulan jurnaL Ilmu Komputer
Online Access:http://klik.unlam.ac.id/index.php/klik/article/view/40
Description
Summary:Dalam paper ini dibahas mengenai optimasi Radial Basis Function Neural Network (RBFNN) dengan Extended Kalman Filter. Proses learning RBF dengan Extended Kalman Filter menggunakan parameter bobot pada hidden center RBF yaitu noise proses pada perhitungan bobot hidden center dan noise pengukuran pada data output. Extended Kalman Filter pada jaringan syaraf RBF berfungsi mengoptimalkan bobot pada hidden center dengan meminimalkan error pada output RBF dengan parameter proses pada unit center RBF dan parameter bobot output pada output layer. Bobot output optimal diperoleh pada saat error output pada training RBF telah konvergen, selanjutnya digunakan untuk proses testing. Algoritma Extended Kalman Filter dan Radial Basis Fuction (EKF-RBF) memungkinkan proses learning memungkinkan center dan variansi pada hidden layer tidak perlu dihitung sebelum bobot output optimum ditemukan. Hasil simulasi menunjukkan bahwa pada training, performansi klasifikasi algoritma EKF-RBF mampu mengenali rata-rata 92.42% dan untuk prediksi didapatkan MAE sebesar 5,3846 dan RMSE sebesar 16,2398 dengan CPU time 24,4146 detik dengan iterasi rata-rata 68,8 iterasi, testing in sample rata-rata MAE sebesar 4,3388, rata-rata RMSE sebesar 13,2230 dan rata-rata CPU time sebesar 0,1123 detik sedangkan pada testing out sample didapatkan rata-rata MAE sebesar 4,1065, RMSE sebesar 11,0126 dan CPU time sebesar 0,0265 detik. Kata kunci : Extended Kalman Filter, Extended Kalman Filter – Radial Basis Function (EKF-RBF), Optimasi Jaringan Syaraf RBF
ISSN:2406-7857
2443-406X