Real-Time Reconstruction of Contaminant Dispersion from Sparse Sensor Observations with Gappy POD Method

Real-time estimation of three-dimensional field data for enclosed spaces is critical to HVAC control. This task is challenging, especially for large enclosed spaces with complex geometry, due to the nonuniform distribution and nonlinear variations of many environmental variables. Moreover, construct...

Full description

Bibliographic Details
Main Authors: Zheming Tong, Yue Li
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Energies
Subjects:
CFD
Online Access:https://www.mdpi.com/1996-1073/13/8/1956
Description
Summary:Real-time estimation of three-dimensional field data for enclosed spaces is critical to HVAC control. This task is challenging, especially for large enclosed spaces with complex geometry, due to the nonuniform distribution and nonlinear variations of many environmental variables. Moreover, constructing and maintaining a network of sensors to fully cover the entire space is very costly, and insufficient sensor data might deteriorate system performance. Facing such a dilemma, gappy proper orthogonal decomposition (POD) offers a solution to provide three-dimensional field data with a limited number of sensor measurements. In this study, a gappy POD method for real-time reconstruction of contaminant distribution in an enclosed space is proposed by combining the POD method with a limited number of sensor measurements. To evaluate the gappy POD method, a computational fluid dynamics (CFD) model is utilized to perform a numerical simulation to validate the effectiveness of the gappy POD method in reconstructing contaminant distributions. In addition, the optimal sensor placement is given based on a quantitative metric to maximize the reconstruction accuracy, and the sensor placement constraints are also considered during the sensor design process. The gappy POD method is found to yield accurate reconstruction results. Further works will include the implementation of real-time control based on the POD method.
ISSN:1996-1073