Mathematical Analysis of Nonlocal Implicit Impulsive Problem under Caputo Fractional Boundary Conditions
This paper is related to frame a mathematical analysis of impulsive fractional order differential equations (IFODEs) under nonlocal Caputo fractional boundary conditions (NCFBCs). By using fixed point theorems of Schaefer and Banach, we analyze the existence and uniqueness results for the considered...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/7681479 |
Summary: | This paper is related to frame a mathematical analysis of impulsive fractional order differential equations (IFODEs) under nonlocal Caputo fractional boundary conditions (NCFBCs). By using fixed point theorems of Schaefer and Banach, we analyze the existence and uniqueness results for the considered problem. Furthermore, we utilize the theory of stability for presenting Hyers-Ulam, generalized Hyers-Ulam, Hyers-Ulam-Rassias, and generalized Hyers-Ulam-Rassias stability results of the proposed scheme. Finally, some applications are offered to demonstrate the concept and results. The whole analysis is carried out by using Caputo fractional derivatives (CFDs). |
---|---|
ISSN: | 1024-123X 1563-5147 |