Eilenberg–Mac Lane Spaces for Topological Groups

In this paper, we establish a topological version of the notion of an Eilenberg&#8722;Mac Lane space. If <i>X</i> is a pointed topological space, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi>...

Full description

Bibliographic Details
Main Author: Ged Corob Cook
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/3/90
id doaj-68b06189b7414927a70a93baf33b6f11
record_format Article
spelling doaj-68b06189b7414927a70a93baf33b6f112020-11-25T01:57:18ZengMDPI AGAxioms2075-16802019-07-01839010.3390/axioms8030090axioms8030090Eilenberg–Mac Lane Spaces for Topological GroupsGed Corob Cook0Department of Mathematics, University of the Basque Country , 48940 Leioa, SpainIn this paper, we establish a topological version of the notion of an Eilenberg&#8722;Mac Lane space. If <i>X</i> is a pointed topological space, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> has a natural topology coming from the compact-open topology on the space of maps <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>S</mi> <mn>1</mn> </msup> <mo>&#8594;</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula>. In general, the construction does not produce a topological group because it is possible to create examples where the group multiplication <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>&#215;</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>&#8594;</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is discontinuous. This discontinuity has been noticed by others, for example Fabel. However, if we work in the category of compactly generated, weakly Hausdorff spaces, we may retopologise both the space of maps <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>S</mi> <mn>1</mn> </msup> <mo>&#8594;</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula> and the product <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>&#215;</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> with compactly generated topologies to see that <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is a group object in this category. Such group objects are known as <i>k</i>-groups. Next we construct the Eilenberg&#8722;Mac Lane space <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for any totally path-disconnected <i>k</i>-group <i>G</i>. The main point of this paper is to show that, for such a <i>G</i>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is isomorphic to <i>G</i> in the category of <i>k</i>-groups. All totally disconnected locally compact groups are <i>k</i>-groups and so our results apply in particular to profinite groups, answering a question of Sauer&#8217;s. We also show that analogues of the Mayer&#8722;Vietoris sequence and Seifert&#8722;van Kampen theorem hold in this context. The theory requires a careful analysis using model structures and other homotopical structures on cartesian closed categories as we shall see that no theory can be comfortably developed in the classical world.https://www.mdpi.com/2075-1680/8/3/90Eilenberg–Mac Lane spacek-grouphomotopical algebra
collection DOAJ
language English
format Article
sources DOAJ
author Ged Corob Cook
spellingShingle Ged Corob Cook
Eilenberg–Mac Lane Spaces for Topological Groups
Axioms
Eilenberg–Mac Lane space
k-group
homotopical algebra
author_facet Ged Corob Cook
author_sort Ged Corob Cook
title Eilenberg–Mac Lane Spaces for Topological Groups
title_short Eilenberg–Mac Lane Spaces for Topological Groups
title_full Eilenberg–Mac Lane Spaces for Topological Groups
title_fullStr Eilenberg–Mac Lane Spaces for Topological Groups
title_full_unstemmed Eilenberg–Mac Lane Spaces for Topological Groups
title_sort eilenberg–mac lane spaces for topological groups
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2019-07-01
description In this paper, we establish a topological version of the notion of an Eilenberg&#8722;Mac Lane space. If <i>X</i> is a pointed topological space, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> has a natural topology coming from the compact-open topology on the space of maps <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>S</mi> <mn>1</mn> </msup> <mo>&#8594;</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula>. In general, the construction does not produce a topological group because it is possible to create examples where the group multiplication <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>&#215;</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>&#8594;</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is discontinuous. This discontinuity has been noticed by others, for example Fabel. However, if we work in the category of compactly generated, weakly Hausdorff spaces, we may retopologise both the space of maps <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>S</mi> <mn>1</mn> </msup> <mo>&#8594;</mo> <mi>X</mi> </mrow> </semantics> </math> </inline-formula> and the product <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>&#215;</mo> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> with compactly generated topologies to see that <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is a group object in this category. Such group objects are known as <i>k</i>-groups. Next we construct the Eilenberg&#8722;Mac Lane space <inline-formula> <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> for any totally path-disconnected <i>k</i>-group <i>G</i>. The main point of this paper is to show that, for such a <i>G</i>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is isomorphic to <i>G</i> in the category of <i>k</i>-groups. All totally disconnected locally compact groups are <i>k</i>-groups and so our results apply in particular to profinite groups, answering a question of Sauer&#8217;s. We also show that analogues of the Mayer&#8722;Vietoris sequence and Seifert&#8722;van Kampen theorem hold in this context. The theory requires a careful analysis using model structures and other homotopical structures on cartesian closed categories as we shall see that no theory can be comfortably developed in the classical world.
topic Eilenberg–Mac Lane space
k-group
homotopical algebra
url https://www.mdpi.com/2075-1680/8/3/90
work_keys_str_mv AT gedcorobcook eilenbergmaclanespacesfortopologicalgroups
_version_ 1724974937712623616