WPG-Controlled Quantum BDD Circuits with BDD Architecture on GaAs-Based Hexagonal Nanowire Network Structure

One-dimensional nanowire quantum devices and basic quantum logic AND and OR unit on hexagonal nanowire units controlled by wrap gate (WPG) were designed and fabricated on GaAs-based one-dimensional electron gas (1-DEG) regular nanowire network with hexagonal topology. These basic quantum logic units...

Full description

Bibliographic Details
Main Authors: Hong-Quan ZHao, Seiya Kasai
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2012/726860
Description
Summary:One-dimensional nanowire quantum devices and basic quantum logic AND and OR unit on hexagonal nanowire units controlled by wrap gate (WPG) were designed and fabricated on GaAs-based one-dimensional electron gas (1-DEG) regular nanowire network with hexagonal topology. These basic quantum logic units worked correctly at 35 K, and clear quantum conductance was achieved on the node device, logic AND circuit unit, and logic OR circuit unit. Binary-decision-diagram- (BDD-) based arithmetic logic unit (ALU) is realized on GaAs-based regular nanowire network with hexagonal topology by the same fabrication method as that of the quantum devices and basic circuits. This BDD-based ALU circuit worked correctly at room temperature. Since these quantum devices and circuits are basic units of the BDD ALU combinational circuit, the possibility of integrating these quantum devices and basic quantum circuits into the BDD-based quantum circuit with more complicated structures was discussed. We are prospecting the realization of quantum BDD combinational circuitries with very small of energy consumption and very high density of integration.
ISSN:1687-4110
1687-4129