Travelling ionospheric disturbance over California mid 2000
In this paper, the GPS data collected by more than 130 permanent GPS stations that belong to the Southern California Integrated GPS Network (SCIGN) around the launch of a Minuteman-II missile on 8 July 2000 (UTC) is processed to reveal traveling ionospheric disturbance (TID) all over the network on...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2006-01-01
|
Series: | Nonlinear Processes in Geophysics |
Online Access: | http://www.nonlin-processes-geophys.net/13/1/2006/npg-13-1-2006.pdf |
Summary: | In this paper, the GPS data collected by more than 130 permanent GPS stations that belong to the Southern California Integrated GPS Network (SCIGN) around the launch of a Minuteman-II missile on 8 July 2000 (UTC) is processed to reveal traveling ionospheric disturbance (TID) all over the network on average 15 min after the launch. This TID was initially perceived to be excited by the launch itself, but this conclusion is challenged by the propagation direction. This is because this TID seems to travel towards the air force base from where the launch took place, not far away from it. This challenge is based on the assumption that TID is occurring at one single ionospheric altitude. While the nature of ionosphere supports such horizontally-guided propagation, multi-altitude ionospheric pierce points are hypothesized, which would support the suggestion that detected TID is excited by the missile launch itself, despite the apparent reverse direction of propagation. The overall analysis rules out any extra-terrestrial sources like solar flares, or seismic sources like earthquakes, which confirms the conclusion of TID excitation by the launch. There is apparent coherence of the TID for about 45 min and the propagation speed of TID within the layer of ionosphere is calculated to be approximately equal to 1230 m/s. While the usual assumption for TID is that they occur around an altitude of 350 km, such sound speed can only occur at much higher altitudes. Further research is recommended to accurately pinpoint the ionospheric pierce points and develop an algorithm to locate the source of TID in case it is totally unknown. |
---|---|
ISSN: | 1023-5809 1607-7946 |