Summary: | The current research attempted to apply a numerical investigation for external freestream-flow influence on thrust-vector control. The freestream-flow Mach numbers varying from 0.05 to 1.1 were studied at different flow conditions. Computational modeling and simulation of a converging diverging nozzle with shock-vector control structure was achieved with utilizing the Unsteady-RANS approach and Spalart-Allmaras turbulence model. The present investigation has shown that, freestream-flow is an essential parameter on performance of shock-vector nozzle. Numerical results demonstrate that, increasing freestream Mach number would reduce the thrust-vectoring effectiveness. Furthermore, optimizing fluidic-injection angle would decrease the negative influence of external freestream-flow on thrust-vectoring performance. Besides, increasing secondary-pressure ratio and decreasing nozzle-pressure ratio at different freestream-flows would reduce response time of starting fluidic thrust-vector process. In addition, to conduct the improvement of the future aero-engine designs, the present research attempted to create a database of different external-flows with main parameters that have effects on thrust-vector control. Keywords: Thrust-vector control, Freestream Mach number, Fluidic-injection angle, Response time
|