Dynamic Heat Supply Prediction Using Support Vector Regression Optimized by Particle Swarm Optimization Algorithm

We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR) model-optimized particle swarm optimization (PSO) algorithms. Due to the interaction of meteorological conditions and the h...

Full description

Bibliographic Details
Main Authors: Meiping Wang, Qi Tian
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2016/3968324
Description
Summary:We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR) model-optimized particle swarm optimization (PSO) algorithms. Due to the interaction of meteorological conditions and the heating parameters of heating system, it is extremely difficult to forecast dynamic heat supply. Firstly, the correlations among heat supply and related influencing factors in the heating system were analyzed through the correlation analysis of statistical theory. Then, the SVR model was employed to forecast dynamic heat supply. In the model, the input variables were selected based on the correlation analysis and three crucial parameters, including the penalties factor, gamma of the kernel RBF, and insensitive loss function, were optimized by PSO algorithms. The optimized SVR model was compared with the basic SVR, optimized genetic algorithm-SVR (GA-SVR), and artificial neural network (ANN) through six groups of experiment data from two heat sources. The results of the correlation coefficient analysis revealed the relationship between the influencing factors and the forecasted heat supply and determined the input variables. The performance of the PSO-SVR model is superior to those of the other three models. The PSO-SVR method is statistically robust and can be applied to practical heating system.
ISSN:1024-123X
1563-5147