Neumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed flux

Abstract $$SL(2,{\mathbb {Z}})$$ S L ( 2 , Z ) invariant action for probe (m, n) string in $$AdS_3\times S^3\times T^4$$ A d S 3 × S 3 × T 4 with mixed three-form fluxes can be described by an integrable deformation of an one-dimensional Neumann–Rosochatius (NR) system. We present the deformed featu...

Full description

Bibliographic Details
Main Authors: Adrita Chakraborty, Kamal L. Panigrahi
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-021-09067-y
id doaj-6860c09029354b2284cb8af9addf4bb1
record_format Article
spelling doaj-6860c09029354b2284cb8af9addf4bb12021-04-04T11:39:56ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-04-0181411410.1140/epjc/s10052-021-09067-yNeumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed fluxAdrita Chakraborty0Kamal L. Panigrahi1Centre For Theoretical Studies, Indian Institute of Technology KharagpurDepartment of Physics, Indian Institute of Technology KharagpurAbstract $$SL(2,{\mathbb {Z}})$$ S L ( 2 , Z ) invariant action for probe (m, n) string in $$AdS_3\times S^3\times T^4$$ A d S 3 × S 3 × T 4 with mixed three-form fluxes can be described by an integrable deformation of an one-dimensional Neumann–Rosochatius (NR) system. We present the deformed features of the integrable model and study general class of rotating and pulsating solutions by solving the integrable equations of motion. For the rotating string, the explicit solutions can be expressed in terms of elliptic functions. We make use of the integrals of motion to find out the scaling relation among conserved charges for the particular case of constant radii solutions. Then we study the closed (m, n) string pulsating in $$R_t\times S^3$$ R t × S 3 . We find the string profile and calculate the total energy of such pulsating string in terms of oscillation number $$({\mathcal {N}})$$ ( N ) and angular momentum $$({\mathcal {J}})$$ ( J ) .https://doi.org/10.1140/epjc/s10052-021-09067-y
collection DOAJ
language English
format Article
sources DOAJ
author Adrita Chakraborty
Kamal L. Panigrahi
spellingShingle Adrita Chakraborty
Kamal L. Panigrahi
Neumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed flux
European Physical Journal C: Particles and Fields
author_facet Adrita Chakraborty
Kamal L. Panigrahi
author_sort Adrita Chakraborty
title Neumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed flux
title_short Neumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed flux
title_full Neumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed flux
title_fullStr Neumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed flux
title_full_unstemmed Neumann–Rosochatius system for (m,n) string in $$AdS_3 \times S^3$$ A d S 3 × S 3 with mixed flux
title_sort neumann–rosochatius system for (m,n) string in $$ads_3 \times s^3$$ a d s 3 × s 3 with mixed flux
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2021-04-01
description Abstract $$SL(2,{\mathbb {Z}})$$ S L ( 2 , Z ) invariant action for probe (m, n) string in $$AdS_3\times S^3\times T^4$$ A d S 3 × S 3 × T 4 with mixed three-form fluxes can be described by an integrable deformation of an one-dimensional Neumann–Rosochatius (NR) system. We present the deformed features of the integrable model and study general class of rotating and pulsating solutions by solving the integrable equations of motion. For the rotating string, the explicit solutions can be expressed in terms of elliptic functions. We make use of the integrals of motion to find out the scaling relation among conserved charges for the particular case of constant radii solutions. Then we study the closed (m, n) string pulsating in $$R_t\times S^3$$ R t × S 3 . We find the string profile and calculate the total energy of such pulsating string in terms of oscillation number $$({\mathcal {N}})$$ ( N ) and angular momentum $$({\mathcal {J}})$$ ( J ) .
url https://doi.org/10.1140/epjc/s10052-021-09067-y
work_keys_str_mv AT adritachakraborty neumannrosochatiussystemformnstringinads3timess3ads3s3withmixedflux
AT kamallpanigrahi neumannrosochatiussystemformnstringinads3timess3ads3s3withmixedflux
_version_ 1721542506429022208