Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides
2D electronic spectroscopy found experimental indications of coherently interacting excitons and trions in doped transition metal dichalcogenides (TMDCs). Here, the authors perform simulations of 2D spectra of monolayer TMDCs based on a many-body formalism, allowing to relate exciton-trion coherence...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2019-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-11497-y |
Summary: | 2D electronic spectroscopy found experimental indications of coherently interacting excitons and trions in doped transition metal dichalcogenides (TMDCs). Here, the authors perform simulations of 2D spectra of monolayer TMDCs based on a many-body formalism, allowing to relate exciton-trion coherence to quantum beats based on microscopic principles. |
---|---|
ISSN: | 2041-1723 |