Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application

By introducing a flux-controlled memristor with quadratic nonlinearity into a 4D hyperchaotic system as a feedback term, a novel 5D hyperchaotic four-wing memristive system (HFWMS) is derived in this paper. The HFWMS with multiline equilibrium and three positive Lyapunov exponents presented very com...

Full description

Bibliographic Details
Main Authors: Fei Yu, Li Liu, Binyong He, Yuanyuan Huang, Changqiong Shi, Shuo Cai, Yun Song, Sichun Du, Qiuzhen Wan
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2019/4047957
Description
Summary:By introducing a flux-controlled memristor with quadratic nonlinearity into a 4D hyperchaotic system as a feedback term, a novel 5D hyperchaotic four-wing memristive system (HFWMS) is derived in this paper. The HFWMS with multiline equilibrium and three positive Lyapunov exponents presented very complex dynamic characteristics, such as the existence of chaos, hyperchaos, limit cycles, and periods. The dynamic characteristics of the HFWMS are analyzed by using equilibria, phase portraits, poincare map, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. Of particular interest is that this novel system can generate two-wing hyperchaotic attractor under appropriate parameters and initial conditions. Moreover, the FPGA realization of the novel 5D HFWMS is reported, which prove that the system has complex dynamic behavior. Finally, synchronization of the 5D hyperchaotic system with different structures by active control and a secure signal masking application of the HFWMS are implemented based on numerical simulations and FPGA. This research demonstrates that the hardware-based design of the 5D HFWMS can be applied to various chaos-based embedded system applications including random number generation, cryptography, and secure communication.
ISSN:1076-2787
1099-0526