Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application
By introducing a flux-controlled memristor with quadratic nonlinearity into a 4D hyperchaotic system as a feedback term, a novel 5D hyperchaotic four-wing memristive system (HFWMS) is derived in this paper. The HFWMS with multiline equilibrium and three positive Lyapunov exponents presented very com...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2019-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2019/4047957 |
Summary: | By introducing a flux-controlled memristor with quadratic nonlinearity into a 4D hyperchaotic system as a feedback term, a novel 5D hyperchaotic four-wing memristive system (HFWMS) is derived in this paper. The HFWMS with multiline equilibrium and three positive Lyapunov exponents presented very complex dynamic characteristics, such as the existence of chaos, hyperchaos, limit cycles, and periods. The dynamic characteristics of the HFWMS are analyzed by using equilibria, phase portraits, poincare map, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. Of particular interest is that this novel system can generate two-wing hyperchaotic attractor under appropriate parameters and initial conditions. Moreover, the FPGA realization of the novel 5D HFWMS is reported, which prove that the system has complex dynamic behavior. Finally, synchronization of the 5D hyperchaotic system with different structures by active control and a secure signal masking application of the HFWMS are implemented based on numerical simulations and FPGA. This research demonstrates that the hardware-based design of the 5D HFWMS can be applied to various chaos-based embedded system applications including random number generation, cryptography, and secure communication. |
---|---|
ISSN: | 1076-2787 1099-0526 |