Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence Alignment
Multiple sequence alignment is one of the most recurrent assignments in Bioinformatics. This method allows organizing a set of molecular sequences in order to expose their similarities and their differences. Although exact methods exist for solving this problem, their use is limited by the computing...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2011-12-01
|
Series: | Journal of Integrative Bioinformatics |
Online Access: | https://doi.org/10.1515/jib-2011-174 |
id |
doaj-683d3e3f0bc34fb498dbf5ff6499ce58 |
---|---|
record_format |
Article |
spelling |
doaj-683d3e3f0bc34fb498dbf5ff6499ce582021-09-06T19:40:31ZengDe GruyterJournal of Integrative Bioinformatics1613-45162011-12-0183577210.1515/jib-2011-174biecoll-jib-2011-174Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence AlignmentSilva Fernando José Mateus da0Pérez Juan Manuel Sánchez1Pulido Juan Antonio Gómez2Rodríguez Miguel A. Vega3School of Technology and Management, Computer Science and Communication Research Centre, Polytechnic Institute of Leiria, Leiria, PortugalDept. Tecnologías Computadores y Comunicaciones, Escuela Politécnica, Universidad de Extremadura, Cáceres, SpainDept. Tecnologías Computadores y Comunicaciones, Escuela Politécnica, Universidad de Extremadura, Cáceres, SpainDept. Tecnologías Computadores y Comunicaciones, Escuela Politécnica, Universidad de Extremadura, Cáceres, SpainMultiple sequence alignment is one of the most recurrent assignments in Bioinformatics. This method allows organizing a set of molecular sequences in order to expose their similarities and their differences. Although exact methods exist for solving this problem, their use is limited by the computing demands which are necessary for exploring such a large and complex search space. Genetic Algorithms are adaptive search methods which perform well in large and complex spaces. Parallel Genetic Algorithms, not only increase the speed up of the search, but also improve its efficiency, presenting results that are better than those provided by the sum of several sequential Genetic Algorithms. Although these methods are often used to optimize a single objective, they can also be used in multidimensional domains, finding all possible tradeoffs among multiple conflicting objectives. Parallel AlineaGA is an Evolutionary Algorithm which uses a Parallel Genetic Algorithm for performing multiple sequence alignment. We now present the Parallel Niche Pareto AlineaGA, a multiobjective version of Parallel AlineaGA.We compare the performance of both versions using eight BAliBASE datasets. We also measure up the quality of the obtained solutions with the ones achieved by T-Coffee and ClustalW2, allowing us to observe that our algorithm reaches for better solutions in the majority of the datasets.https://doi.org/10.1515/jib-2011-174 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Silva Fernando José Mateus da Pérez Juan Manuel Sánchez Pulido Juan Antonio Gómez Rodríguez Miguel A. Vega |
spellingShingle |
Silva Fernando José Mateus da Pérez Juan Manuel Sánchez Pulido Juan Antonio Gómez Rodríguez Miguel A. Vega Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence Alignment Journal of Integrative Bioinformatics |
author_facet |
Silva Fernando José Mateus da Pérez Juan Manuel Sánchez Pulido Juan Antonio Gómez Rodríguez Miguel A. Vega |
author_sort |
Silva Fernando José Mateus da |
title |
Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence Alignment |
title_short |
Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence Alignment |
title_full |
Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence Alignment |
title_fullStr |
Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence Alignment |
title_full_unstemmed |
Parallel Niche Pareto AlineaGA – an Evolutionary Multiobjective approach on Multiple Sequence Alignment |
title_sort |
parallel niche pareto alineaga – an evolutionary multiobjective approach on multiple sequence alignment |
publisher |
De Gruyter |
series |
Journal of Integrative Bioinformatics |
issn |
1613-4516 |
publishDate |
2011-12-01 |
description |
Multiple sequence alignment is one of the most recurrent assignments in Bioinformatics. This method allows organizing a set of molecular sequences in order to expose their similarities and their differences. Although exact methods exist for solving this problem, their use is limited by the computing demands which are necessary for exploring such a large and complex search space. Genetic Algorithms are adaptive search methods which perform well in large and complex spaces. Parallel Genetic Algorithms, not only increase the speed up of the search, but also improve its efficiency, presenting results that are better than those provided by the sum of several sequential Genetic Algorithms. Although these methods are often used to optimize a single objective, they can also be used in multidimensional domains, finding all possible tradeoffs among multiple conflicting objectives. Parallel AlineaGA is an Evolutionary Algorithm which uses a Parallel Genetic Algorithm for performing multiple sequence alignment. We now present the Parallel Niche Pareto AlineaGA, a multiobjective version of Parallel AlineaGA.We compare the performance of both versions using eight BAliBASE datasets. We also measure up the quality of the obtained solutions with the ones achieved by T-Coffee and ClustalW2, allowing us to observe that our algorithm reaches for better solutions in the majority of the datasets. |
url |
https://doi.org/10.1515/jib-2011-174 |
work_keys_str_mv |
AT silvafernandojosemateusda parallelnicheparetoalineagaanevolutionarymultiobjectiveapproachonmultiplesequencealignment AT perezjuanmanuelsanchez parallelnicheparetoalineagaanevolutionarymultiobjectiveapproachonmultiplesequencealignment AT pulidojuanantoniogomez parallelnicheparetoalineagaanevolutionarymultiobjectiveapproachonmultiplesequencealignment AT rodriguezmiguelavega parallelnicheparetoalineagaanevolutionarymultiobjectiveapproachonmultiplesequencealignment |
_version_ |
1717768367724560384 |