Inference for copula modeling of discrete data: a cautionary tale and some facts

In this note, we elucidate some of the mathematical, statistical and epistemological issues involved in using copulas to model discrete data. We contrast the possible use of (nonparametric) copula methods versus the problematic use of parametric copula models. For the latter, we stress, among other...

Full description

Bibliographic Details
Main Author: Faugeras Olivier P.
Format: Article
Language:English
Published: De Gruyter 2017-01-01
Series:Dependence Modeling
Subjects:
Online Access:https://doi.org/10.1515/demo-2017-0008
id doaj-681e6297ff024b1692d74c08790eb1c2
record_format Article
spelling doaj-681e6297ff024b1692d74c08790eb1c22021-10-02T18:54:45ZengDe GruyterDependence Modeling2300-22982017-01-015112113210.1515/demo-2017-0008demo-2017-0008Inference for copula modeling of discrete data: a cautionary tale and some factsFaugeras Olivier P.0Toulouse School of Economics - Université Toulouse Capitole, Manufacture des Tabacs, Bureau MF319, 21 Allée de Brienne, 31000 Toulouse, FranceIn this note, we elucidate some of the mathematical, statistical and epistemological issues involved in using copulas to model discrete data. We contrast the possible use of (nonparametric) copula methods versus the problematic use of parametric copula models. For the latter, we stress, among other issues, the possibility of obtaining impossible models, arising from model misspecification or unidentifiability of the copula parameter.https://doi.org/10.1515/demo-2017-0008copuladiscrete dataparametric modelstatistical inferenceunidentifiability62a0162h2062h12
collection DOAJ
language English
format Article
sources DOAJ
author Faugeras Olivier P.
spellingShingle Faugeras Olivier P.
Inference for copula modeling of discrete data: a cautionary tale and some facts
Dependence Modeling
copula
discrete data
parametric model
statistical inference
unidentifiability
62a01
62h20
62h12
author_facet Faugeras Olivier P.
author_sort Faugeras Olivier P.
title Inference for copula modeling of discrete data: a cautionary tale and some facts
title_short Inference for copula modeling of discrete data: a cautionary tale and some facts
title_full Inference for copula modeling of discrete data: a cautionary tale and some facts
title_fullStr Inference for copula modeling of discrete data: a cautionary tale and some facts
title_full_unstemmed Inference for copula modeling of discrete data: a cautionary tale and some facts
title_sort inference for copula modeling of discrete data: a cautionary tale and some facts
publisher De Gruyter
series Dependence Modeling
issn 2300-2298
publishDate 2017-01-01
description In this note, we elucidate some of the mathematical, statistical and epistemological issues involved in using copulas to model discrete data. We contrast the possible use of (nonparametric) copula methods versus the problematic use of parametric copula models. For the latter, we stress, among other issues, the possibility of obtaining impossible models, arising from model misspecification or unidentifiability of the copula parameter.
topic copula
discrete data
parametric model
statistical inference
unidentifiability
62a01
62h20
62h12
url https://doi.org/10.1515/demo-2017-0008
work_keys_str_mv AT faugerasolivierp inferenceforcopulamodelingofdiscretedataacautionarytaleandsomefacts
_version_ 1716848570280181760